首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
Processing of alumina fiber-reinforced alumina matrix composites by hot-pressing was described. The mechanical properties of the composites fabricated by different sintering conditions including temperature and pressure have been investigated. The results indicated that the higher sintering temperature and pressure corresponded to the higher bulk density and higher maximum strength of the composite, whereas the pseudo-ductility of the composite was lower. The preliminary results of the composite with monazite-coated fibers showed that maximum strength could be improved up to 35% compared with the noncoated fiber composite in the same sintering condition. Moreover, the fracture behavior of the composite changed from completely brittle fracture to non-brittle fracture under the suitable sintering conditions. SEM observation of the fracture surface indicated that the coating worked as a protective barrier and avoided sintering of the fibers together even at high temperature and pressure during densification process.  相似文献   

2.
Metal matrix composites (MMCs) offer extra strength and high temperature capabilities in comparison with unrein-forced metals. Aluminum composites possess higher stiffness, strength, fatigue properties and low weight advantages.Carbon fiber reinforced Al composites (Al-Cf) and silicon carbide particulate reinforced Al composites (Al-SiCp) were shock densified using axisymmetric assemblies for underwater explosions. Unidirectional planar shock waves were applied to obtain uniform consolidation of the composites. The energy generator was a high explosive of 6.9 km/s detonation velocity. Irregular morphological powders of Al were the base material. The reinforcement ratio was 15 Vol. pct for Al-Cf composites and 30 Vol. pct for Al-SiCp composites. The microstructural and the strength characteristics of the shock consolidated Al composites are reported.  相似文献   

3.
The(TiB/Ti)-TiAl composites with a laminated structure composing of alternating TiB/Ti composite layers,α2-Ti3Al interfacial reaction layers of andγ-TiAl layers were successfully pre pared by spark plasma sintering of alternately stacked Tib2/Ti powder layers and TiAl powder layers.And the influence of thickness ratio of Tib2/Ti powder layers to TiAl powder layers on microstructure evolution and mechanical properties of the re sulting(TiB/Ti)-TiAl laminated composites were investigated systemically.The results showed that the thickening ofα2-Ti3Al layers which originated from the reaction of Ti and TiAl was significantly hindered by introducing Tib2particles into starting Ti powders.As the thickness ratio of Tib2/Ti powder layers to TiAl powder layers increased,the bending fracture strength and fracture toughness at room temperature of the final(TiB/Ti)-TiAl laminated composites were remarkably improved,especially for the(TiB/Ti)-TiAl composites prepared by Tib2/Ti powder layers with thickness of 800μm and TiAl powder layers with thickness of 400μm,whose fracture toughness and bending strength were up to 51.2 MPa·m1/2and 1456 MPa,respectively,293%and 108%higher than that of the monolithic TiAl alloys in the present work.This was attributed to the addition of high-performance network TiB/Ti composite layers.Moreover,it was noteworthy that the ultimate tensile strength at 700℃of(TiB/Ti)-TiAl composites fabricated by 400μm thick Tib2/Ti powder layers and 400μm thick TiAl powder layers was as high as that at 550℃of network TiB/Ti composites.This means the service temperature of(TiB/Ti)-TiAl laminated composites was likely raised by 150℃,meanwhile a good combination of high strength and high toughness at ambient tempe rature could be maintained.Finally,the fracture mechanism of(TiB/Ti)-TiAl laminated composites was proposed.  相似文献   

4.
Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites   总被引:2,自引:0,他引:2  
The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resisti  相似文献   

5.
It is known that fiber metal laminates (FML) as one of hybrid materials with thin metal sheets and fiber/epoxy layers have the characteristics of the excellent damage tolerance, fatigue and impact properties with a relatively low density. Therefore, the mechanical components using FML can contribute the enhanced safety level of the sound construction toward the whole body. In this study, the impact performance of carbon reinforced aluminum laminates (CARAL) is investigated by experiments and numerical simulations. Drop weight tests are carried out with the weight of 4.7 kg at the speed of 1 and 2 m/s, respectively. Dynamic non-linear transient analyses are also accomplished using a finite element analysis software, ABAQUS. The experiment results and numerical results are compared with impact load-time histories. Also, energy-time histories are applied to investigate the impact performance of CARAL.  相似文献   

6.
Titanium/fluorapatite(Ti/FA) composites with various FA additions were fabricated by powder metallurgy.The decomposition of FA during sintering was accelerated by the presence of Ti.The main reaction products of FA and Ti were identified as CaO,Ti phosphides,and CaTiO3.The addition of FA significantly inhibited the densification of Ti.The in vitro bioactivity of the composites was evaluated in a simulated body fluid(SBF). After immersion into the SBF,all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface.Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion.Furthermore,the release of fluorine ions from the composite was confirmed,which could promote bone regeneration and retard the formation of caries in the biological environment.The in vitro behavior was attributed to multiple factors,including the surface conditions and the constituents of the composite.The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.  相似文献   

7.
The flexural and impact resistance of a newly developed FRC/bamboo laminate have been investigated.The laminate considered in this study was combined with reformed bamboo plate and extruded fiber reinforced cementitious (FRC) sheet.Innovated from the raw bamboo,reformed bamboo showed high tensile strength and high strength to weight ratio.It can not only remarkably strengthen the FRC sheet but also reduce the total weight of the laminate.Flexural and impact load,broken energy,deflection and duration were measured.Test results showed that the flexural strength value for the laminate can be improved to greater than 90MPa,while the impact resistance is increased more than 10 times for the laminate when compared with the FRC sheet only.  相似文献   

8.
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.  相似文献   

9.
The sandwich-like structure of reduced graphene oxide/polyaniline(RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The RGO/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 m A/cm~2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 m F cm~(-2). Also, it delivers a high energy density of 45.5 m W h cm~(-2) at power density of 1250 m W cm~(-2). Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6% initial capacitance retention after 5000 cycles.Such composite electrode has a great potential for applications in flexible electronics, roll-up display,and wearable devices.  相似文献   

10.
C/C-ZrC composites with continuous ZrC matrix were prepared by precursor infiltration and pyrolysis process using zirconium-containing polymer.Ablation properties of the composites were investigated by oxyacetylene flame with heat flux of 2380 and 4180 kW/m~2,respectively.The results showed that C/C-ZrC composites exhibited excellent ablation resistance under the heat flux of 2380 kW/m~2 for 120 s and a tree-coral-like ZrO_2protective layer formed after ablation.However,when the heat flux increased to 4180 kW/m~2,the maximum temperature of ablated surface reached 2500 ℃ and a strong degradation of ablation resistance was observed due to the weak bonding between the formed ZrO_2 layer and the composites.The flexural strength of C/C-ZrC composites was 110.7 ± 7.5 MPa.There were a large number of carbon fiber bundles pull-out,and the composites exhibited a pseudo-plastic fracture behavior.  相似文献   

11.
In this paper the damage behaviour of natural stitched composite single lap-joints are investigated under low velocity impact loading conditions. For this study, the laminated hybrid composite beams were pinned using Flax yarns before curing process. The Charpy impact test was chosen to study the energy absorbing capability of single lap composite joints. Composite beams were fabricated from combination of glass/epoxy and carbon/epoxy composites. It was shown that composite beams which are stitched through the thickness are able to absorb more energy in comparison with adhesive bonded composite joints in the hybrid composite beams. The Charpy impact test of stitched composite single lap joint was also simulated by finite element analysis using software LS-DYNA and the results verified with relevant experimental data.  相似文献   

12.
Laminated composites with ceramic front layers and metallic or composite backing layers have gained attractiveness as lightweight armours, as they exhibit the same ballistic performance with lower areal densities as compared to steels. Drop-weight testing (DWT) has potential for evaluating the low velocity impact behaviour of materials. This testing gives significant ideas and information about failure mechanisms and behaviour of materials under low velocity impact. In this study, DWT of alumina/aluminum laminated composites was done in order to investigate the effects of lamination type, density with respect to area and mechanical property of backing material on the low velocity ballistic performance of these composites. The experimental results showed that the laminated composite with ceramic front layer and aged-aluminum alloy as backing layer was the most effective among different investigated specimens against low velocity impact loads.  相似文献   

13.
本文基于实验和数值模拟方法研究了碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能.采用商业有限元软件ABAQUS建立了层间/层内两类混杂复合材料低速冲击模型,采用基于应变形式的Hashin失效准则模拟面内损伤;零厚度Cohesive内聚力单元预测层间分层;编写VUMAT子程序定义渐进失效过程,并结合C扫和Micro...  相似文献   

14.
In the present study, effect of hybridization on the hybrid composite armors under ballistic impact is investigated using hydrocode simulations. The hybrid composite armor is constructed using various combinations and stacking sequences of fiber reinforced composites having woven form of fibers specifically high specific-modulus/high specific-strength Kevlar fiber (KF), tough, high strain-to-failure fiber Glass fiber (GF) and high strength/high stiffness Carbon fiber (CF). Different combinations of composite armors studied are KF layer in GF laminate, GF layer in KF laminate, KF layer in CF laminate and CF layer in KF laminate at various positions of hybridized layers for a fixed thickness of the target. In this article the results obtained from the finite element model are validated for the case of KF layer in a GF laminate with experimental predictions reported in the literature in terms of energy absorption and residual velocity and good agreement is observed. Further, the effect of stacking sequence, projectile geometry and target thickness on the ballistic limit velocity, energy absorbed by the target and the residual velocity are presented for different combinations of hybrid composite armors. The simulations show that, at a fixed thickness of the hybrid composite armor, stacking sequence of hybridized layer shows significant effect on the ballistic performance. The results also indicate energy absorption and ballistic limit velocity are sensitive to projectile geometry. Specifically, it is found that arranging the KF layer at the rear side, GF layer in the exterior and CF layer on the front side offers good ballistic impact resistance. The hybrid composite armor consisting of a CF layer in KF laminate acquires maximum impact resistance and is the best choice for the design compared to that of other combinations studied.  相似文献   

15.
史永胜  孙文泽 《包装工程》2023,44(1):300-308
目的 对无伞空投箱所用的碳纤维、玻璃纤维、芳纶纤维/环氧树脂体系纤维混杂铺层的复合材料层合板进行研究,以在低成本下提高实现效果。方法 复合材料层合板分为10层,采用层间混杂结构,通过改变混杂比、铺层角度及铺层顺序,设计148种铺层方案,利用ANSYS–APDL软件分析3种参数变量对层合板拉伸性能及抗弯性能的影响。结果 沿主要受力方向铺设纤维,碳纤维层在外侧、玻璃纤维层集中在中心,且玻璃纤维层体积分数为40%时,材料具有最高的性价比。结论 针对混杂纤维复合材料层合板,通过调整混杂比得出碳/玻璃混杂纤维复合材料性能较好,通过调整铺层角度得出纤维铺设角度越接近受力方向其性能效果越好,通过调整铺层顺序得出不同混杂比、铺层角度下的最佳性能结构。  相似文献   

16.
The ballistic impact behavior of hybrid composite laminates synthesized for armor protection was investigated. The hybrid materials, which consist of layers of aluminum 5086-H32 alloy, Kevlar® 49 fibers impregnated with shear thickening fluid (STF) and epoxy resin were produced in different configurations using hand lay-up technique. The hybrid materials were impacted by projectiles (ammunitions of 150 g power-point) fired from a rifle Remington 7600 caliber 270 Winchester to strike the target at an average impact velocity and impact energy of 871 m/s and 3687 J, respectively. The roles of the various components of the hybrid materials in resisting projectile penetration were evaluated in order to determine their effects on the overall ballistic performance of the hybrid laminates. The effects of hybrid material configuration on energy dissipation during ballistic impacts were investigated in order to determine a configuration with high performance for application as protective armor. The energy dissipation capability of the hybrid composite targets was compared with the initial impact energy of low caliber weapons (according to NATO standards) in order to determinate the protection level achieved by the developed hybrid laminates. Deformation analysis and penetration behavior of the targets were studied in different stages; the initial (on target front faces), intermediate (cross-section), and final stages (target rear layers). The influence of target thickness on the ballistic impact response of the laminates were analyzed. Differences in ballistic behavior were observed for samples containing Kevlar® impregnated with STF and those containing no STF. Finally, mechanisms of failure were investigated using scanning electron microscopic examination of the perforations.  相似文献   

17.
Aramid fiber/glass fiber hybrid composites were fabricated to investigate the impact behavior of four-layer composites through the analysis of delamination area. The effect of position and content of aramid layer on the impact properties of hybrid composites was examined by using driven dart impact tester. The surface-treated composites were prepared by treating the surface of aramid fiber with oxygen plasma and silane coupling agent. The trend of total impact energy was correlated to that of delamination area in both untreated and treated composites. The impact energy and delamination area of hybrid composites depended on the position of aramid layer. When aramid layer was at back surface, the composite exhibited the higher impact energy and delamination area. In surface-treated composites, however, the position of aramid layer had a minor effect on the impact energy of hybrid composites. This was due to the restriction in deformation of aramid fiber. The impact behavior of four-layer hybrid composites was affected by the delamination area at each interface. The deformation at neighbored-aramid layers increased the deformation at adjacent interfaces.  相似文献   

18.
Ballistic Penetration of Dyneema Fiber Laminate   总被引:1,自引:0,他引:1  
UHMWPE fiber (Dyneema) reinforced composites are an important class of materials for armors.These materials provide superior ballistic performance to the armor, such as the military armor systems requiring a reduction in back-armor effects or a substrate for hardened facings of steet or ceramic. The reported work characterized the ballistic impact and mechanical performance of Dyneema fiber in composite laminates. The capability of the laminate to absorb ballistic impact energy was influenced by the impact velocity and the laminate areal density. Two kinds of penetration were compared and a two-step model for the penetration was proposed.  相似文献   

19.
Bunea  M.  Bria  V.  Silva  F. S.  Bîrsan  I. G.  Buciumeanu  M. 《Applied Composite Materials》2021,28(4):1277-1290

The low velocity impact response of the epoxy composite materials, which were reinforced with various hybrid contents, such as plain pure or hybrid fabrics (carbon, aramid and glass fibers and copper wires) and filler mixtures into the epoxy matrix (aramid powder, potatoes starch, barium ferrite and carbon black) was investigated using a drop weight impact machine. The aim of this study was to characterize and assess the effects of fiber orientation at various angles and filler mixtures into epoxy matrix on the impact response. All the tests were carried out at constant impact energy, namely 90.629 J. Results indicated that the fiber orientation at various angles has a positive effect on impact response, mainly in the case of aramid fabric reinforced composites. In terms of influence of fillers addition into matrix, it was obtained an improvement on the impact response of hybrid fabric reinforced composite as compared to the pure fabric reinforced composites.

  相似文献   

20.
本工作以平面Charpy冲击、缺口与非缺口Charpy冲击全面地研究了本实验所制备的超高模量聚乙烯(UHMPE)纤维-碳纤维混杂增强环氧复合材料的冲击性能。同时根据试样在冲击过程中的载荷-时间曲线以及试样在冲击破坏后的形貌对该类混杂复合材料的冲击破坏过程与冲击破坏模式进行了分析。结果表明,将UHMPE纤维与碳纤维相混杂,复合材料的冲击性能呈现出明显的正混杂效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号