首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
《现代电子技术》2017,(13):9-12
多特征信息有较好的检测性能和适应性,而粒子滤波则是一种处理目标跟踪模型的非线性和非高斯特点的有效方法,将两者优点结合并针对红外图像特点,提出一种基于多特征信息融合的跟踪算法,该方法按一定的权值系数利用目标颜色和纹理特征构建模型,并融合于粒子滤波框架中。实验表明该跟踪方法能准确地跟踪海上红外运动目标。  相似文献   

2.
复杂环境中稳健的红外目标跟踪在自主导航、无人机探测、预警等方面具有重要研究意义.就经典粒子滤波红外目标跟踪算法中单一的灰度特征缺乏鲁棒性引起跟踪失效的问题,提出了一种基于特征融合的粒子滤波红外目标跟踪算法.结果表明,该算法能够从跟踪鲁棒性、准确性和实时性3个方面实现稳健的红外目标跟踪.  相似文献   

3.
视频运动目标的跟踪是一个典型的非线性、非高斯问题,粒子滤波是一个解决非线性、非高斯问题的主流方法,粒子滤波技术具有非线性等特性,在目标跟踪过程中得到了广泛的应用。传统粒子滤波跟踪算法的退化现象严重,经过几次迭代递推,权重方差随着时间推移而增大,为解决该问题引入均值漂移算法,调整初始粒子分布,使粒子集中于邻近的局部极大值区域内,以减少退化现象的发生。并且将颜色特征和边缘特征融合在粒子滤波跟踪算法中,在传统算法基础上提出改进,加入优化机制,使粒子的权值分布更加接近实际情况。实验结果表明了该算法的有效性。  相似文献   

4.
针对目标跟踪方法,本研究提出了一种基于运动特征和颜色特征多特征融合的粒子滤波跟踪方法,在颜色直方图描述颜色特征的基础上,融合了目标的运动特征,验证了通过增加对目标特征描述信息,可以提高跟踪健壮性以及可靠性。  相似文献   

5.
汪超  吴迪 《光电子.激光》2018,29(12):1342-1349
针对复杂环境下目标跟踪问题,提出了一种基于 有限差分扩展卡尔曼粒子滤波的多 特征自适应融合跟踪算法。采用有限差分扩展卡尔曼滤波器对采样粒子集合进行滤波更新, 通过融入最新观测信息的方法消弱权值退化现象;在新算法的框架内,利用目标静态和动态 互补特征作为观测量,实现不同环境下目标的多特征自适应融合跟踪。实验结果表明,本文 方法具有较好的跟踪精度和抗噪声干扰能力。  相似文献   

6.
基于特征融合的粒子滤波目标跟踪新方法   总被引:9,自引:9,他引:0  
闫河  刘婕  杨德红  王朴  金炜 《光电子.激光》2014,(10):1990-1999
针对传统粒子滤波(PF)算法采用单一颜色特征建模 跟踪目标性能差的缺陷,提出一种颜色特征与纹理特 征相融合的PF目标跟踪新算法。首先,采用一种具有抗噪声和保护纹理边缘的全局中值二值 模式 (GMBP)纹理算子,对模板图像进行局部差绝对值处理,得到幅 值序列模板,将幅值序列模板内的中值作为模板的阈值,与模板邻域比较获得新的纹理图像 ;然后,与 具有光照不变特性的局部二值模式(LBP)纹理算子结合,形成一种(GMLBP)新的纹理描述算子 。最后,分别计算GMLBP纹理特征粒子权值和HSV颜色特征粒子权 值,并依据权值大小确定融合系数,对纹理特征粒子权值和颜色特征粒子权值进行线 性融合,再对融合后粒子权值进行归一化处理,从而得到目标位置状态的最终估计值。对比 实验结果表明, 相对于单一颜色特征的目标跟踪算法,所提算法捕捉目标位置准确且具有更低的平均跟踪误 差,其平均误差降低了近2倍。  相似文献   

7.
基于多特征融合的均值迁移粒子滤波跟踪算法   总被引:8,自引:0,他引:8       下载免费PDF全文
仅用单一的颜色特征进行跟踪是大多数跟踪算法鲁棒性不高的主要原因。针对此问题,该文提出一种多特征融合跟踪算法。该算法利用颜色和纹理特征表示目标,通过均值迁移和粒子滤波算法进行特征融合,有效地避免了单一颜色特征在光照变化和背景相似情况下的不稳定问题。将两种常用的融合策略结合,减轻了粒子的退化现象,提高了算法效率。实验结果表明该算法提取的目标特征具有较强的鲁棒性,能实现复杂场景下的目标跟踪。  相似文献   

8.
《信息技术》2017,(10):88-92
为了解决粒子滤波算法在重采样过程中会造成粒子有效性和多样性的丧失,导致粒子贫化现象,提出了一种基于萤火虫算法的改进的粒子滤波算法。该算法在粒子滤波重要性采样过程中使用萤火虫算法,对粒子进行迭代寻优,使得采样出来的粒子更接近真实的后验概率;在粒子滤波重采样过程中,使用萤火虫算法使得粒子向高似然区域移动,提高粒子的多样性。实验结果表明,基于改进的粒子滤波算法目标跟踪效果优于传统的粒子滤波算法,可以在各种具有挑战性的条件下更好地进行目标跟踪。  相似文献   

9.
定义了欧氏空间内的局部粒子密度的概念,针对四种不同的情况作出分析,对优选粒子的优劣作出评价并指导后续的粒子重采样和模板更新过程,并在此基础上给出了一种新的基于局部粒子密度的目标跟踪方法.比较实验显示,相对于原始粒子滤波方法和其他粒子重要性重采样方法,该方法在保证跟踪有效性的同时,提高了跟踪效率.  相似文献   

10.
基于粒子滤波的红外目标跟踪新算法   总被引:3,自引:0,他引:3  
张宝亮  杨柳  张亮 《电子科技》2007,(11):22-25,34
粒子滤波是一种在非线性和非高斯情形下进行状态估计的有效方法。提出一种基于粒子滤波的红外目标跟踪的新算法。阐述了粒子滤波算法的原理,将粒子滤波引入到红外目标跟踪中。考虑到传统的粒子滤波跟踪算法存在计算量大,误码多的缺点,对传统算法进行了改进。对采样粒子进行优化选择,改进了重采样环节。实验结果表明,改进算法较传统粒子滤波算法能更准确,更有效的跟踪红外目标。  相似文献   

11.
孔素然 《微电子学与计算机》2012,29(11):177-179,184
研究目标物体的图像准确跟踪定位问题.本文主要针对传统的目标跟踪算法中由于视频图像的复杂性,同时运动突变性的存在,使得运动间的关联性被大幅降低,跟踪结果出现较大偏差,难以准确跟踪视频图像,提出了一种粒子滤波优化图像帧视觉跟踪新技术.算法引入了随机分布的运动突变影响算子,在运动估计过程中作为惩罚因子出现,同时采用粒子滤波视觉目标采样视频图像,从而得到实时的跟踪.实验结果表明,提出的方法避免了传统跟踪算法的延时,能够精确实时定位目标物体.  相似文献   

12.
针对非高斯、强噪声背景下的高机动目标实施跟踪时,卡尔曼滤波、扩展卡尔曼滤波等算法将出现滤波精度下降甚至发散现象。粒子滤波方法作为一种基于贝叶斯估计的非线性滤波算法,在处理非高斯非线性时变系统的参数估计和状态滤波问题方面有独到的优势。以目标跟踪问题为背景,将粒子滤波与卡尔曼滤波算法进行了对比研究。  相似文献   

13.
张瑞 《无线电通信技术》2011,37(2):29-31,50
采用粒子滤波算法解决运动目标跟踪中非线性非高斯问题。将均值漂移算法嵌入到粒子滤波的采样阶段中,通过将每个粒子聚集到所在区域的局部极值,提高了采样粒子的使用效率。当发生目标遮挡时采用改进的粒子滤波算法,当无遮挡时采用均值漂移算法以提高速度。实验结果表明,该方法较传统单一算法具有较强的实时性和鲁棒性,能够有效实现在遮挡场景下的目标跟踪。  相似文献   

14.
    
Occlusion is a difficult problem for visual tracking and we use multiple wide baseline cameras to deal with occlusion. We propose a data fusion approach for visual tracking using multiple cameras with overlapping fields of view. First, we present a spatial and temporal recursive Bayesian filter to fuse information from multiple cameras. An adaptive particle filter is formulated to realize the spatial and temporal recursive Bayesian filter. Our algorithm is able to recover the target’s position even under complete occlusion in a camera.
Jian-Kang WuEmail:
  相似文献   

15.
为解决复杂场景中目标跟踪问题,提出了一种噪声未知情况下的自适应无迹粒子滤波(A-UPF)算法。算法采用改进的Sage-Husa估计器对系统未知噪声的统计特性进行实时估计和修正,并与无迹Kalman粒子滤波器相结合产生优选的建议分布函数,降低系统估计误差的同时有效提升了系统的抗噪声能力。实验结果表明,本文方法对于复杂条件下的目标跟踪问题具有较高的精度和较强的鲁棒性。  相似文献   

16.
基于多特征自适应融合的分类采样跟踪算法   总被引:1,自引:1,他引:0  
针对目标跟踪中的场景易变和目标模板不稳定等问 题,提出了一种基于多特征自适应 融合的分类采样跟踪算法。算法利用密集特征信息将目标模板用多个重叠子区域划分,每 个子区域对应一个多特征采样窗口。利用多特征自适应融合构造强可区分性的目标模型,最 大程度地提高各子区域之间的互补性,以增强目标模板的区分能力。在粒子滤波(PF)框架下 , 多特征自适应融合策略提高了目标观测质量,保证跟踪的持续稳定。实验结果表明,本文所 提算法具 有良好的目标跟踪性能,并对动态场景、目标形变及遮挡情况具有较好的跟踪准确性和鲁棒 性。  相似文献   

17.
一种基于卡尔曼滤波及粒子滤波的目标跟踪算法   总被引:5,自引:3,他引:2  
杜超  刘伟宁  刘恋 《液晶与显示》2011,26(3):384-389
针对卡尔曼跟踪算法在非线性非高斯情况下跟踪结果不再准确,以及粒子滤波跟踪算法计算量大难以满足实时性的缺陷,提出了卡尔曼滤波及粒子滤波相结合的算法。利用卡尔曼滤波进行跟踪得到候选目标并计算目标模型与候选模型的匹配程度,若与目标模型匹配度小于一定阈值,则转换跟踪方式利用粒子滤波进行跟踪来修正卡尔曼滤波结果;同时,采用\"模板缓冲区法\"对目标模型进行更新以保证跟踪的连续性、稳定性及准确性。实验结果表明,这种跟踪算法既发挥了卡尔曼滤波的实时性又保持了粒子滤波的准确性,有较好的跟踪性能。  相似文献   

18.
针对基于颜色的粒子滤波跟踪方法在复杂背景下会导致跟踪失败的问题,提出了一种基于局部二值模式纹理和颜色特征的粒子滤波目标跟踪方法。颜色直方图是对目标在彩色图像中的全局描述,而局部二值模式纹理包含了灰度图像中局部邻近区域的纹理信息,两者可以互为补充。因此同时用颜色直方图和局部二值模式纹理直方图描述目标,在粒子滤波框架下将目标颜色和局部二值模式纹理有机结合起来。实验结果表明,该算法不仅提高了跟踪精度,而且具有较强的稳健性。  相似文献   

19.
针对粒子滤波(Particle filter)算法的粒子衰退和计算量过大问题,提出一种将P—N跟踪器与粒子滤波算法结合的目标跟踪方法。首先构造P—N跟踪器,利用跟踪器来确定目标区域范围并输出置信度,以此作为对目标物体定位的依据;在滤波过程中,依据跟踪器结果来进行粒子重采样过程,完成了对抽样粒子集的自适应调节,提高了粒子数量,有效降低了粒子数量。从而达到了抑制粒子衰退和动态调整计算量的目的。实验证明将该方法应用于实时摄像头采集视频跟踪。与传统粒子滤波算法比。在抗粒子衰退与减少粒子数量方面有明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号