共查询到16条相似文献,搜索用时 62 毫秒
1.
时间序列是随时间次序变化的高维实值数据,广泛存在于医学、金融、监控等领域。因为传统的分类算法在时间序列上的分类效果不佳且不具备可解释性,而shapelet为时间序列中最具辨别性的连续子序列,具有可解释性,所以基于shapelet的时间序列分类已成为时间序列分类研究的热点之一。首先,通过归纳总结,将现有的时间序列shapelet发现算法分为空间搜索发现shapelet和目标函数优化学习shapelet两类,并介绍了shapelet的相关应用;然后,从分类的对象出发,重点阐述了基于shapelet的一元时间序列和多元时间序列的分类算法;最后,指出了基于shapelet的时间序列分类在未来的研究方向。 相似文献
2.
近年来,时间序列分类问题的研究受到了广泛关注。先进的时间序列分类方法通常建立在良好的特征表示的基础之上。Shapelet是时间序列中具备鉴别性的子序列,可有效表达时间序列的局部形状特征。然而,高昂的计算成本大大限制了基于Shapelet的时间序列分类方法的实用性。除此之外,传统的Shapelet仅能描述欧氏距离度量下子序列的形状特征,因此极易受到噪声干扰并难以挖掘子序列中蕴含的其他类型的鉴别性信息。为应对上述问题,提出了一种新的时间序列分类算法——嵌入典型时间序列特征的随机Shapelet森林。该算法基于以下3个关键策略:1)随机选取Shapelet并限制Shapelet的作用范围以提高效率;2)在Shapelet中嵌入多个典型时间序列特征以提高算法对不同分类问题的适应性,并弥补随机选取Shapelet带来的精度损失;3)在新的特征表示的基础上构建随机森林分类器以确保算法的泛化能力。112个UCR时间序列数据集上的实验结果表明,本文算法的准确性超越了基于Shapelet精确搜索和Shapelet转换技术的STC算法,以及多个其他类型的先进时间序列分类算法。此外,广泛的实验对比验证了本文... 相似文献
3.
时间序列的表示与分类算法综述 总被引:1,自引:0,他引:1
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内,依照给定的采样率,对某种潜在过程进行观测的结果。时间序列数据广泛地存在于商业、农业、气象、生物科学以及生态学等诸多领域,从时间序列中发现有用的知识已成为数据挖掘领域的研究热点之一。在时间序列表示方面,主要介绍了非数据适应性表示方法、数据适应性表示方法和基于模型的表示方法;针对时间序列的分类方法,着重介绍了基于时域相似性、形状相似性和变化相似性的分类算法,并对未来的研究方向进行了进一步的展望。 相似文献
4.
5.
《信息安全与技术》2019,(8)
时间序列分类是时间序列数据挖掘的一个分支,针对传统时间序列分类模型存在的失真的问题,文章提出了基于区间权值的集成算法EAIW(Ensemble AlgorithmofInterval Weights)。首先利用区间权值计算方法,为时间序列的不同区间赋予不同的权值,对计算做了并行化处理,以解决子序列特征不明显的问题。进而确定集成分类器的基分类器,以保证集成分类器的性能。然后,在训练集上训练集成分类器,并行化改进集成分类器训练、分类较为耗时的部分。文章将提出的算法在时间序列分类数据库上进行了实验,结果表明提出的算法比基准算法最优正确率数目高25%,并且算法在并行化之后具备可伸缩性。 相似文献
6.
7.
朱钢樑 《计算机与数字工程》2021,49(4):718-721
时间序列预测(TSP)在机器学习中是一个重要问题.论文提出了一种基于核密度估计(KDE)的集成增量学习方法,用于时间序列的预测问题.算法首先根据集成学习的原理产生基学习器池.然后用基学习器池对预测样本的输出值得到核密度估计,并用得到的核密度估计来剪枝基学习器池.得到最终的剪枝集成系统后,用该剪枝集成系统来预测样本的输出.最后,算法根据样本在动态选择集上筛选出的最近邻集合进行增量学习.在数据集IAP,ICS,MCD上的试验结果表明,提出的时间序列预测算法和当前流行的算法相比效果有一定程度的提高. 相似文献
8.
时间序列 shapelets 是序列之中最具有辨别性的子序列。解决时间序列分类问题的有效途径之一是通过shapelets 转换技术,将其发现与分类器的构建相分离,其主要优点是优化了 shapelets 的选择过程并能够灵活应用不同的分类策略。但此方法也存在不足,仅仅简单地应用这些 shapelets 而忽略它们之间的逻辑组合关系,有可能降低分类的效果;另外,离线式的发现 shapelets 的过程是相当耗时的。文中针对后一个问题,采用了一种基于智能缓存的计算重用技术,将发现 shapelets 的时间复杂度降低了一个数量级。在此基础上,作者提出了一种基于合取或析取的逻辑 shapelets 转换方法,并通过在多个经典的基准数据集上测试,表明了该方法能够在提升分类准确性的同时保持 shapelets 所具有的解释力。 相似文献
9.
近年来,基于符号表示的时间序列分类方法受到广泛关注,大部分现有方法对原始数据进行符号表示时,没有使用类别的标签信息。提出基于线性判别分析(LDA)的时间序列符号表示方法,考虑最大化类间区分度,使用LDA对原始数据集进行维数约减。再利用信息增益寻找降维后数据的符号投影区间,采用多重系数分箱(MCB)技术将维数约简后数据表示成符号序列。该方法在20个时间序列数据集上的分类效果好于已有方法,有监督的符号表示方法能有效提高分类性能。 相似文献
10.
11.
shapelet是时间序列中最具有辨识性的子序列,其一经提出就被来自各个领域的研究人员广泛研究,并在此过程中提出了许多有效的shapelet发现技术用于进行时间序列分类。然而,多变量时间序列的候选shapelet可能长度不同且变量来源不同,故很难直接对其进行比较,这对基于shapelet多变量时间序列分类方法提出了独特的挑战。为了应对这一挑战,提出了一种基于无监督表示学习和shapelet的多变量时间序列分类方法Multi-shapelet。Multi-shapelet首先使用混合模型DC-GNN(Dilated convolution neural network and graph neural network, DC-GNN)作为编码器,将不同长度的候选shapelet嵌入统一的shapelet选择空间,以进行shapelet之间的比较;其次,提出了一种新的损失函数以无监督学习方式训练该编码器,使得DC-GNN对shapelet编码得到相应的嵌入(Embedding)后,属于同类shapelet对应的嵌入之间的相对位置形成的拓扑与原空间中shapelet之间相对位置形成的拓扑之间的关系更接近于一种等比例的缩小,这对后续基于相似性的剪枝过程十分重要;最后,使用K-means聚类和模拟退火算法进行shapelet剪枝和选择操作。在UEA的18个多变量时间序列数据集上的实验结果表明,Multi-shapelet的整体精度相比于其他方法得到了显著提升。 相似文献
12.
特征提取在提高分类的准确性中起着非常关键的作用.对时序特征提取的方法进行归纳分类,将有利于对特征提取整体性,全面性的认识.回顾现有的时间序列中特征提取的方法,将其总结为四大类,它们分别是基于基本统计方法的特征提取、基于模型的特征提取、基于变换的特征提取、基于分形维数的特征提取.针对每一类的特征提取方法,进一步研究了它相应的分类方法和它在时间序列数据中的应用邻域. 相似文献
13.
Shapelet是一种具有辨识性的时间序列子序列,通过识别局部特征达到对时间序列准确分类的目的。原始shapelet发现算法效率较低,大量工作关注于提高shapelet发现的效率。然而,对于带有趋势变化的时间序列,采用典型的时间序列表示方法进行shapelet发现,容易造成序列中趋势信息的丢失。为了解决时间序列趋势信息丢失的问题,提出一种基于趋势特征的多样化top-k shapelet分类方法:首先采用趋势特征符号化方法对时间序列的趋势信息进行表示;然后针对序列的趋势特征符号获取shapelet候选集合;最后通过引入多样化top-k查询算法从候选集中选取k个最具代表性的shapelets。在时间序列的分类实验中,与传统分类算法相比,所提方法在11个数据集上的分类准确率均有提升;与FastShapelet算法相比,提升了运行效率,缩短了算法的运行时间,并在趋势信息明显的数据上效果显著。结果表明,所提方法能有效提高时间序列的分类准确率,提升算法运行效率。 相似文献
14.
Shapelet序列分析为时间序列分类提供了一种快速分类的方法,但Shapelet序列抽取速度很慢,限制了它的应用范围。为了加快 Shapelet 序列的提取,提出了一种基于主成分分析的改进方法。首先运用主成分分析法(PCA)对时间序列数据集进行降维,采用降维后的数据表示原数据,然后对降维后的数据提取出最能代表类特征的Shapelet序列。实验结果表明:本方法在保证分类准确率的前提下,提高了运算速度。 相似文献
15.
论文结合相空间重构理论与一类分类方法提出一种时间序列中的异常值检测方法。该方法首先将时间序列映射到相空间,然后对相空间中的点实行一类分类,最后,根据KKT条件进行异常值检测。仿真实验结果表明了所给方法的可行性和有效性。 相似文献
16.
时间序列分类问题的算法比较 总被引:8,自引:0,他引:8
时间序列分类是时间序列数据分析中的重要任务之一.不同于时间序列分析中常用的算法与问题,时间序列分类是要把整个时间序列当作输入,其目的是要赋予这个序列某个离散标记.它比一般分类问题困难,主要在于要分类的时间序列数据不等长,这使得一般的分类算法不能直接应用.即使是等长的时间序列,由于不同序列在相同位置的数值一般不可直接比较,一般的分类算法依然还是不适合直接应用.为了解决这些难点,通常有两种方法:第一,定义合适的距离度量(这里,最常用的距离度量是DTW距离),使得在此度量意义下相近的序列有相同的分类标签,这类方法属于领域无关的方法;第二,首先对时间序列建模(利用序列中前后数据的依赖关系建立模型),再用模型参数组成等长向量来表示每条序列,最后用一般的分类算法进行训练和分类,这类方法属于领域相关的方法.长期以来,研究者往往只倾向于使用其中一种算法,而这两类算法的比较却比较缺乏.文中深入分析了这两类方法,并且分别在不同的合成数据集和实际数据集上比较了两类方法.作者观测到了两类算法在不同因素影响下的性能表现,从而为今后发展新的算法提供了有力依据. 相似文献