首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于小波分析的时间序列数据挖掘   总被引:2,自引:0,他引:2  
将小波分析和ARMA模型引入时间序列数据挖掘中。利用小波消噪对原始时间序列进行滤波,利用小波变换充分提取和分离金融时间序列的各种隐周期和非线性,把小波分解序列的特性和分解数据随尺度倍增而倍减的规律充分用于BP神经网络和自回归移动平均模型的建模。利用小波重构技术将各尺度域的预报结果组合成为时间序列的最终预报。经过试验验证了该方法的实际有效性。  相似文献   

2.
基于离散小波变换的时间序列数据挖掘   总被引:2,自引:0,他引:2  
提出了一种利用离散小波变换进行时间序列分析预测的新方法。该方法的特点主要是在小波系数的选取依据上与以往方法不同,以往方法大多是选取前k个位置的系数或者是选取数值最大的k个位置的系数,其依据是能量保持;本文方法的选取依据是各系数在训练集数据上的分类能力大小,即通过对已知类别的训练集的学习过程,找出使得类内距离最小、类间距离最大的若干系数作为特征系数。对于未知类别的时间序列,根据特征系数计算出该序列属于各个类别的隶属度,隶属度最高的类别即为预测结果。实验结果表明,本方法用于时间序列分析预测,显示出了较高的效率和准确性。  相似文献   

3.
对商务智能、数据挖掘的概念和两者的关系做了简要的描述,并对当前流行的数据挖掘算法做了介绍。通过对某地区一段时期GDP和当地用电的情况进行数据挖掘说明在当今以信息为基础的企业竞争中.商务智能对企业管理者、决策者意义重大。  相似文献   

4.
基于小波分解与重构的时间序列预测法   总被引:18,自引:2,他引:16       下载免费PDF全文
贺国光  马寿峰  李宇 《自动化学报》2002,28(6):1012-1014
一般的时间序列预测方法对非线性非平稳的信号不适用.本文提出了一种基于多分辨小波分解与重构的预测方法.与一般方法相比,这种方法有效地提高了预测的准确度.  相似文献   

5.
基于小波变换的时间序列相似模式匹配   总被引:21,自引:1,他引:21  
提出了一种新的时序相似模式匹配方法,它采用小波分析的方法实现时间序列数据的降维,采用小波序列表示原序列,将小波序列组织为多维索引结构R-tree存储,在该索引结构基础上,基于一种表示相似性的距离函数,定义了范围查询和最近邻查询算法,实验结果证明这种方法性能优于传统的基于傅立叶变换的相似模式匹配方法。  相似文献   

6.
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该神经网络进行模拟实验,证明了该神经网络具有较好的预测效果。  相似文献   

7.
杨涛  李龙澍 《微机发展》2005,15(5):116-118,154
提出了一种能够对含有时间序列数据的数据库信息进行数据挖掘的方法。首先使用时间序列相似搜索方法对其中的时间序列数据进行模式发现,然后将时间序列数据转化为离散型数值,进一步使用粗糙集理论进行数据约简和规则提取。通过使用这种方法能够对含有时序数据的信息进行充分的挖掘并发现其中的规律。  相似文献   

8.
基于小波神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该网络进行模拟实验,证明了该神经网络具有较好的预测效果。  相似文献   

9.
基于小波神经网络的混沌时间序列分析与相空间重构   总被引:14,自引:1,他引:14  
探讨了小波神经网络在混沌时间序列分析与相空间重构中的应用,通过混沌时间序列单步预测与多步预测的例子,比较了小波神经网络与MLP的逼近和收敛性能,对最近提出的一种多分辨率学习策略进行了改进,利用连续3次样条小和正交Daubechies小波代替Haar小波对时间序列做小波分解;用改进的学习算法训练网络并应用到混沌序列相空间重构中,实验结果表明,小波神经网络比MLP和ARMA模型具有更强大的逼近能力,因而十分适合应用于时间序列分析中;多分辨率学习算法可作为分析复杂混沌时间序列的一种重要工具。  相似文献   

10.
针对时间序列子序列聚类存在的平凡相似和水平伸缩等问题,提出了一种新的子序列聚类算法。它采用多孔平滑滤波器组对时间序列进行低通平滑处理,在所得到的多个尺度序列上生成平凡簇,然后将各个平凡簇的代表子序列作为数据样本进行聚类。新方法利用平凡簇克服了子序列聚类中的平凡相似问题,并且可以在时间序列上发现不等长的相似子序列,较好地解决了水平轴伸缩问题。实验结果证明新算法对于子序列聚类具有比较好的效果。  相似文献   

11.
Clipping is the process of transforming a real valued series into a sequence of bits representing whether each data is above or below the average. In this paper, we argue that clipping is a useful and flexible transformation for the exploratory analysis of large time dependent data sets. We demonstrate how time series stored as bits can be very efficiently compressed and manipulated and that, under some assumptions, the discriminatory power with clipped series is asymptotically equivalent to that achieved with the raw data. Unlike other transformations, clipped series can be compared directly to the raw data series. We show that this means we can form a tight lower bounding metric for Euclidean and Dynamic Time Warping distance and hence efficiently query by content. Clipped data can be used in conjunction with a host of algorithms and statistical tests that naturally follow from the binary nature of the data. A series of experiments illustrate how clipped series can be used in increasingly complex ways to achieve better results than other popular representations. The usefulness of the proposed representation is demonstrated by the fact that the results with clipped data are consistently better than those achieved with a Wavelet or Discrete Fourier Transformation at the same compression ratio for both clustering and query by content. The flexibility of the representation is shown by the fact that we can take advantage of a variable Run Length Encoding of clipped series to define an approximation of the Kolmogorov complexity and hence perform Kolmogorov based clustering.  相似文献   

12.
杨颖  陈德华 《微机发展》2006,16(6):193-195
利用多分辨分析方法,结合小波分析和神经网络思想构建一种新型的神经网络模型———小波神经网络,解决了传统神经网络中隐层节点数难以确定的问题。通过对股票的预测,说明该方法能有效地提高预测精度,避免了人工神经网络模型的固有缺陷。  相似文献   

13.
In the last decade there has been an explosion of interest in mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of improvement that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details.To illustrate our point, we have undertaken the most exhaustive set of time series experiments ever attempted, re-implementing the contribution of more than two dozen papers, and testing them on 50 real world, highly diverse datasets. Our empirical results strongly support our assertion, and suggest the need for a set of time series benchmarks and more careful empirical evaluation in the data mining community.  相似文献   

14.
基于动态时间弯曲的时序数据聚类算法的研究   总被引:14,自引:0,他引:14  
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里的距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度对数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法。该文提出了基于动态时间弯曲技术的相似搜索算法,通过计算时序数据之间的最短弯曲路径来获得序列的匹配。对综合控制时序数据进行基于不同距离测度的聚类分析对比结果表明该文提出的算法有很高的精度和对振幅差异、噪声和线性漂移有强的鲁棒性,具有良好的应用价值。  相似文献   

15.
研究了应用数据挖掘技术预测时间序列数据中事件的方法。针对时间序列数据提出了显著特征提取算法,给出了特征间的相似度量标准,并应用特征聚类算法,将时间序列数据转换成相应的特征序列表示。应用频繁模式发现算法和预测模式生成算法在预测时段内发现与目标事件相关的时序特征模式,预测事件的发生。实验结果表明,该文所提出的方法能够有效地预测时间序列数据中的事件。  相似文献   

16.
基于互关联后继树的多时间序列关联模式挖掘   总被引:3,自引:1,他引:3  
时间序列是现实生活中常见的数据形式之一,在时间序列中发现频繁模式是分析时间序列变化规律的一项重要任务.提出基于互关联后继树的多时间序列关联模式挖掘算法.该算法首先用Allen逻辑位置关系来描述序列状态关系,根据这些关系在时间窗口内顺序或并行出现情况,获得一个由这些关系组成的特殊序列.在此基础上提出了一个基于互关联后继树的新型挖掘模型,实现了序列间关联模式的挖掘.与其他方法相比,该算法简单、直观,而且整个挖掘过程不需要生成候选模式,大大提高挖掘效率.  相似文献   

17.
基于分段时间弯曲距离的时间序列挖掘   总被引:22,自引:1,他引:22  
在时间序列库中的数据挖掘是个重要的课题,为了在挖掘的过程中比较序列的相似性,大量的研究都采用了欧氏距离度量或者其变形,但是欧氏距离及其变形对序列在时间轴上的偏移非常敏感.因此,采用了更鲁棒的动态时间弯曲距离,允许序列在时间轴上的弯曲,并且提出了一种新的序列分段方法,在此基础上定义了特征点分段时间弯曲距离.与经典时间弯曲距离相比,大大提高了效率,而且保证了近似的准确性.  相似文献   

18.
基于TSEOPM的在轨航天器故障预报方法研究   总被引:1,自引:0,他引:1  
针对在轨航天器非线性系统的故障预报,提出一种基于时间序列事件征兆模式挖掘的在轨航天器故障预报方法,该方法以在轨航天器遥测数据建立状态监测时间序列,根据事件特征函数利用层次聚类算法挖掘出故障事件征兆模式,然后利用故障事件征兆模式对航天器的状态监测时间序列数据进行分析,判断是否为故障征兆点,从而实现故障预报;实验结果表明,该方法能有效地预测在轨航天器状态监测时间序列数据中的故障事件。  相似文献   

19.
基于时间序列的趋势性分析及其预测算法研究   总被引:5,自引:0,他引:5  
文章通过时间序列分析研究,提出了基于时间序列的趋势性分析3类算法和随机性分析12类预测算法,以该算法实现的数据挖掘系统,经实际应用后其效果很好。因此,该算法在国民经济应用领域中具有较高的理论和实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号