首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 3 毫秒
1.
在45钢表面进行添加微一纳米WC颗粒的镍基自熔粉末激光熔覆处理.得到不同Ni基WC合金涂层.对熔覆层进行显微组织观察、硬度测定以及室温千摩擦磨损试验.结果表明,纳米品WC的加入能改善涂层的耐磨性能,在本试验条件下,当添加的纳米级WC和微米级WC各为15%时.涂层耐磨性能最佳;但纯纳米晶WC增强涂层耐磨性不佳,其主要磨损破坏方式随涂层中WC晶粒尺寸变化而有所变化.  相似文献   

2.
WC颗粒增强Ni基合金复合涂层的热处理组织变化   总被引:2,自引:1,他引:1  
制备了Ni60B合金激光熔覆涂层、微米WC颗粒增强Ni60B合金激光熔覆涂层(WCm)和纳米WC颗粒增强Ni60B合金激光熔覆涂层(WCn),模拟干滑动磨损温升和磨损时间对激光熔覆涂层进行了100~900℃不同温度下的热处理,用扫描电镜、透射电镜和X射线衍射技术等分析了原始激光熔覆涂层的组织以及在不同温度处理后涂层的组织变化,研究了仅在热的作用下,有无WC颗粒强化对涂层组织变化的影响,以及微米WC和纳米WC不同颗粒增强对镍基合金涂层组织变化的作用。分析结果表明:激光熔覆Ni60B涂层随温度上升到700℃,Cr、Fe、C元素发生扩散,碳硼化物形态变化并发生晶型转变,在900℃时才有相析出现象。WCm涂层和WCn涂层随着温度的升高,Ni基固溶体中出现W和Cr、Fe、C的脱溶,各种形态的碳化物组织将发生不同形式的转化。纳米WC的加入使得WCn涂层组织过饱和度增大,出现上述变化的温度降低。  相似文献   

3.
感应熔覆微-纳米复合材料涂层组织及摩擦磨损特性研究   总被引:1,自引:1,他引:1  
以Ni60A、微米级和纳米级WC粉末为原料,利用感应熔覆技术在45钢表面制备了微-纳米WC复合材料耐磨涂层。利用扫描电子显微镜、能谱仪及X射线衍射仪观察分析了复合材料涂层的显微组织结构;同时考察了复合材料涂层在室温滑动干摩擦条件下的耐磨性能。结果表明,复合涂层由WC、Cr23C6、Co6W6C、У-Ni固溶体等物相组成;其组织均匀,与基体之间为完全冶金结合;复合材料涂层表现出优异的耐磨性及良好的承载能力,其磨损速率随载荷增大变化不大。  相似文献   

4.
氩弧熔覆WC+Ni3Si/Ni基复合涂层的组织与耐磨性   总被引:1,自引:1,他引:0  
以Ni粉、Si粉、WC粉为原料,采用氩弧熔覆技术,在Q235钢表面制备出由WC、Ni3Si增强的Ni基耐磨复合涂层.利用XRD和SEM分析了氩弧熔覆层的相组成及显微组织,并测试了氩弧熔覆层的显微硬度和磨损性能.结果表明,熔覆区的组织是在Ni基体上均匀地分布着WC颗粒和Ni,Si枝晶,显微硬度最高可达1400 HV0.2;复合涂层中存在颗粒强化、细晶强化和同溶强化等多种强化作用,大幅度地提高了Q235钢的耐磨性能.  相似文献   

5.
添加适量稀土氧化物,采用自配的熔覆材料在ZL108表面激光熔覆制备了Ni基WC金属陶瓷复合涂层,对熔覆层进行了显微组织分析、显微硬度测量以及室温下的干滑动摩擦磨损试验。结果表明,铝合金上激光熔覆Ni基WC金属陶瓷增强熔覆层无裂纹,组织细小、致密,WC颗粒增强相与基体之间结合良好。室温下熔覆层的磨损主要为显微切削和粘着磨损,干摩擦磨损性能优良。  相似文献   

6.
在重要航空材料TA15钛合金基材表面进行激光同轴送粉熔覆Ni60A-Ni包WC-TiB2-Y2O3混合粉末可生成非晶-纳米晶增强复合涂层.对涂层进行微观组织观察、显微硬度测试及室温干摩擦磨损试验.结果表明,涂层主要由γ-(Fe,Ni),WC,α-W2C,M12C,Ti-B化合物,Ti-Al金属间化合物,Mo,Zr与V元素的碳化物以及非晶相构成.整个涂层为非晶、纳米晶及其它晶化相共存.涂层较TA15钛合金表现出更好的耐磨损性,且涂层的主要磨损机制为磨粒磨损与粘着磨损.纳米晶颗粒的产生可使涂层磨损表面光滑,有利于摩擦系数与磨损量的降低.  相似文献   

7.
20092293微米WC增强Ni60合金高频感应熔覆涂层耐磨性能/贺定勇…//焊接学报.-2008,29(8):1~4采用高频感应熔覆方法在Q235低碳钢基体上制备了不同含量的微米WC增强Ni60A合金复合涂层。用MLS-225型湿砂橡胶轮磨粒磨损试验机评价了涂层的耐磨性能,利用SEM,XRD观察并分析了涂层的显微组织和磨损表面形貌。结果表明,在相同试验条件下,涂层的硬度和耐磨性随WC含量的增加而提高,当WC含量少于30%时,WC分布不均匀,主要集中于涂层的中部,涂层中Cr7C3相以粗大的六方状和长条状存在,不利于涂层耐磨性的提高;当WC含量达到50%时,Ni基合金中加入WC的含量达到了合适比例,耐磨性最佳,相对耐磨性为Ni60A涂层的6.5倍;当WC含量达到60%时,涂层的硬度最高,但出现了较多的孔洞,大量未熔的WC颗粒在磨粒的反复作用下剥落形成了大的剥落坑,导致耐磨性下降。涂层与基体实现了冶金结合,涂层的磨损机制主要为轻微的塑性切削和硬质相的脆性剥落。图4表1参820092294TC4表面反应电火花强化层物相及磨损行为分析/马跃进…//焊接学报.-2008,29(10):21~24利用DZ-1400型电火...  相似文献   

8.
20092293微米WC增强Ni60合金高频感应熔覆涂层耐磨性能/贺定勇…//焊接学报.-2008,29(8):1~4采用高频感应熔覆方法在Q235低碳钢基体上制备了不同含量的微米WC增强Ni60A合金复合涂层。用MLS-225型湿砂橡胶轮磨粒磨损试验机评价了涂层的耐磨性能,利用SEM,XRD观察并分析了涂层的显微组织和磨损表面形貌。结果表明,在相同试验条件下,涂层的硬度和耐磨性随WC含量的增加而提高,当WC含量少于30%时,WC分布不均匀,主要集中于涂层的中部,涂层中Cr7C3相以粗大的六方状和长条状存在,不利于涂层耐磨性的提高;当WC含量达到50%时,Ni基合金中加入WC的含量达到了合适比例,耐磨性最佳,相对耐磨性为Ni60A涂层的6.5倍;当WC含量达到60%时,涂层的硬度最高,但出现了较多的孔洞,大量未熔的WC颗粒在磨粒的反复作用下剥落形成了大的剥落坑,导致耐磨性下降。涂层与基体实现了冶金结合,涂层的磨损机制主要为轻微的塑性切削和硬质相的脆性剥落。图4表1参820092294TC4表面反应电火花强化层物相及磨损行为分析/马跃进…//焊接学报.-2008,29(10):21~24利用DZ-1400型电火...  相似文献   

9.
WC对激光熔覆层组织及耐磨耐冲击性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
激光熔覆Ni基合金涂层具有良好的综合性能,但耐磨与耐冲击性能仍有待提高。分别采用含微米与纳米WC颗粒的Ni基粉末激光熔覆制备WC/Ni涂层,研究两种WC颗粒对Ni基涂层组织及耐磨耐冲击性的影响。利用SEM与XRD对涂层进行微观组织分析,利用高速摄像机分析熔覆过程中的熔池形态。采用磨损试验机、夏比冲击试验机对涂层进行耐磨性与耐冲击性测试。纳米WC对熔池流动的促进作用强于微米WC,并使涂层组织得到更显著的细化。由于微米WC与Ni45涂层结合紧密,磨损试验中能有效抵抗配磨件微凸体的切削,最终显著增强涂层耐磨性,磨损率较Ni45涂层降低88.38%。但微米WC的高脆性不利于涂层耐冲击性的提高,冲击韧性仅为Ni45涂层的91.28%。由于纳米WC在细化晶粒的同时会弥散分布于晶界与共晶区,在磨损过程中阻碍位错运动,抑制晶粒塑性变形,进而减弱配磨件对涂层的切削,提高涂层耐磨性,磨损率较Ni45涂层降低53.43%。由于在晶界与共晶区的纳米WC会阻碍裂纹扩展并改变扩展方向,进而提高形成贯穿裂纹的能量,增加涂层断裂所需的冲击功,使涂层耐冲击性得到显著提高,冲击韧性较Ni45涂层提高13.37%。通过有限元分析可知,在冲击过程中涂层中的高脆性微米WC会形成高应力集中,证明其对涂层耐冲击性具有不利影响。而纳米WC能降低位错的不均匀滑移,缓解位错堆积,进而有效分散涂层在冲击过程中形成的应力集中,证明其能显著提高复合涂层的耐冲击性能。研究证明,纳米WC能实现涂层耐磨性与耐冲击性的同步提升。  相似文献   

10.
目的研究纳米WC对Ni基合金喷熔层抗磨粒磨损性能的影响。方法采用扫描电镜、X射线衍射分析了氧乙炔火焰喷熔Ni基合金层和两种不同结构WC增强Ni基合金喷熔层的微观组织和相结构,并通过磨粒磨损试验平台对三种涂层进行磨损性能测试。结果纳米WC粉末的加入,能有效提高喷熔层的宏观硬度。通过组织分析得出纳米WC增强Ni基喷熔层中除含有γ-(Ni,Cr)固溶体、Cr的碳化物、硼化物以及微米级WC颗粒之外,还含有一定量的纳米WC团聚体和少量高硬度的W_2C相。磨粒磨损实验结果显示,纳米WC增强Ni基喷熔层的磨损失重分别为Ni60和NiWC35涂层失重的56%和73%。对比磨损后涂层的表面微观形貌可知,纳米WC颗粒在涂层中能有效降低磨粒压入喷熔层的深度,从而控制磨粒对喷熔层的犁削量。结论纳米WC增强Ni基合金喷熔层中含有的γ-(Cr,Ni)固溶体、Cr_(23)C_6、Cr_7C_3、Cr_3Ni_2及未熔化的WC颗粒和WC脱碳形成的W_2C等硬质相,使镍基自熔合金涂层的硬度有较大提高,同时也大大提高了涂层的抗磨粒磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号