共查询到16条相似文献,搜索用时 46 毫秒
1.
从Wheeler等S-CLAY1本构模型出发,在软黏土结构性和塑性各向异性性状前期研究成果的基础上,综合考虑软黏土的塑性各向异性、结构性及其演化规律,将传统本构模型发展为更适用于K0固结结构性软黏土的本构模型。在考虑土体结构性及其演化的基础上,进一步研究土体塑性各向异性及其演化规律,引入旋转极限曲线的概念,通过增加一个表征软黏土各向异性演化速率的参数b,分析旋转硬化对K0固结结构性软黏土受力变形性状的影响,各向异性的初始值则可由常规试验参数获得。选取典型的浙江温州软黏土和Bothkennar软黏土,对比K0固结三轴压缩和三轴拉伸的计算和试验结果,揭示结构性软黏土屈服面旋转硬化的规律,同时对旋转演化速率参数的取值方法和取值范围进行研究。 相似文献
2.
文章针对天津滨海K0固结饱和软黏土,开展轴向及侧向耦合循环加载真三轴试验。重点探讨了循环中主应力系数及循环应力水平对软黏土动应力应变响应的影响。试验结果表明:同一循环应力水平,循环中主应力系数越大,累积永久大主应变越小,中主应力的增大对大主应变的发展有抑制作用;循环中主应力系数在0.4~0.6,存在某一临界值,其为中主应变发生正负反向的临界点。同一中主应力系数,循环应力水平越高,土样最终累积永久主应变越大;循环应力水平在0.4~0.46,存在某一临界值,其为土样循环振稳及失稳的临界点。在大主应力方向,循环中主应力系数越小,土体刚度弱化越显著;在中主应力方向,刚度弱化程度随中主应力系数的变化并非单调。循环应力水平越大,土体刚度弱化越显著。利用广义剪应变表征三维复杂应力状态下土单元的应变水平,建议了能够预测任意给定循环中主应力系数、循环应力水平及循环次数下累积永久广义剪应变的指数函数表达式。研究成果以期为波浪、交通等复杂动荷载作用下软黏土地基的稳定性分析及变形计算提供试验依据。 相似文献
3.
在修正剑桥模型基础上综合考虑了软黏土的各向异性及率相关性,建立了适用于K0固结软黏土的弹黏塑性本构模型。模型借鉴过应力理论的基本思想,定义了与动态加载面相对应的参考屈服面,应用径向映射准则将两者联系起来,流动函数通过分析一维情况下土体的体积蠕变速率得到。以黏塑性体积应变为硬化参数,将一维情况扩展到三维应力状态,直接用次固结系数描述土体黏性强弱,所有参数可通过压缩试验及三轴不排水剪切试验得到。分别计算了代表性等向和K0固结黏土的三轴不排水等应变率加载、不排水剪切蠕变及蠕变破坏过程,与试验结果进行对比,验证本文模型的有效可行性。 相似文献
4.
本文在修正剑桥模型的基础上综合考虑了软黏土的各向异性、结构性及其演变和屈服面硬化规则中塑性剪切应变的影响,将传统模型发展为适用于K0固结结构性软黏土的本构模型。本文模型借鉴Collins等人提出的符合热力学耗散原理的本构模型,同时在描述土体结构性演变的过程中参考了Asaoka等人的次加载/超加载屈服面本构模型,并采用了具有明确物理意义的内变量。与传统的修正剑桥模型相比,增加了3个分别表征软黏土各向异性和结构性的参数(θn,R和R*)以及两个演化参数(m和a),而参数R和R*的初始值则可由结构性土的屈服应力比YSR和灵敏度St获得。本文选取了典型的浙江温州软黏土和Bothkennar软黏土,对比了三轴压缩的计算和试验结果,体现了本模型在结构性软黏土计算上相对于传统本构模型优越性。 相似文献
5.
6.
软黏土三轴固结不排水剪试验数据处理方法 总被引:1,自引:0,他引:1
三轴固结不排水剪(CU)试验的传统数据处理方法是根据破坏标准所确定的值直接绘制摩尔圆包线,确定土样的抗剪强度值。当遇到土性不匀或试验中某一试样扰动给试验带来误差时,其摩尔圆包线很难确定。归一化法、数值关系法、相关法3种特殊的试验成果处理方法,能更准确地确定CU试验的结果。 相似文献
7.
《工业建筑》2015,(9):86-92
为研究超固结比对软黏土次固结特性的影响,对温州正常固结和超固结软黏土开展长期一维压缩试验,系统性研究先期固结压力、超固结比等因素对次固结变形和次固结系数的影响。试验结果表明:先期固结压力对软黏土固结变形发展曲线有显著影响,固结压力小于先期固结压力时,曲线变化较小,接近直线,此时次固结系数随固结压力增长较快;当固结压力超过先期固结压力后,曲线变化明显,呈三段式发展,次固结系数随固结压力的增大略有减小,最后趋向某一稳定值。软黏土的次固结系数随超固结比的增大而减小,通过试验结果分析得到了次固结系数随超固结比变化的计算式。次固结变形随时间的变化在双对数坐标下近似为直线关系,基于此建立了次固结变形累积方程。 相似文献
8.
饱和黏土的不排水抗剪强度(su)是海洋工程地基稳定性验算必备的参数,该参数的准确性对工程安全至关重要。室内等向固结三轴压缩试验(CIUC)是工程中获得su最普遍的方法。随着对海洋土工程特性认识的加深及国际设计方法的引入,su的室内测试方法种类增加,但不同方法测得的su存在差异。针对天津滨海黏土开展不同固结方式、剪切方式以及不同超固结比(OCR)条件下的三轴压缩、三轴拉伸和静单剪(DSS)试验,分析比较了不同试验方法得到的su,并揭示了导致同一种土体su产生差异的原因,建立起不同试验方法测得的su之间的定量关系。在此基础上结合修正剑桥模型提出了可以预测不同试验方法su的计算公式。 相似文献
9.
卸载后的K0超固结黏土同时具有初始各向异性以及超固结特性,其特点有如下三方面:(1)当大主应力沿着K0固结沉积面法线方向加载时,此时的剪切模量较等方向固结的剪切模量更高。(2)由于初始偏压固结导致三轴压缩下K0固结黏土的临界状态应力比相较等方向固结的更大。(3)循环加载导致超固结特性以及应力诱导各向异性更为显著。基于超固结土UH模型,引入反映初始各向异性的边界面转轴参量ζ,通过倾斜边界面来提高其塑性模量。分析其剪胀应力比特征,提出状态应力比来替换统一硬化参数中的普通应力比,用来反映应变硬化、软化现象,引入旋转硬化规则用来反映复杂加载路径下的应力诱导各向异性性质,同时修正统一硬化参数,用来反映循环加载下的塑性体应变累积特性,塑性偏应变的滞回圈与棘轮特征,卸载路径的塑性变形特性。利用基于t准则的变换应力方法将上述新模型转变为三维本构模型,通过与一系列K0超固结黏土在不排水及循环加载等复杂加载路径下的试验与预测结果进行对比,结果表明:新模型可简单方便地应用于K0超固结黏土在复杂加载路... 相似文献
10.
软黏土中深基坑开挖支护系统设计一般由不排水稳定控制。考虑基坑开挖引起土体应力主轴旋转和土体不排水抗剪强度的各向异性,首先基于所提出的各向异性本构模型推导了三轴条件下软黏土的不排水强度公式并结合Casagrande和Carillo推荐的能考虑土体应力主轴旋转的软黏土强度公式,提出一种适合于基坑开挖抗隆起稳定分析的K0正常固结软黏土的不排水各向异性抗剪强度。假定Prandtl的土体滑移破坏形式,运用塑性极限分析上限定理推导非均质土层中深基坑开挖的抗隆起稳定公式。研究了基坑开挖土体强度各向异性比、挡墙入土深度、坑底硬土层对抗隆起安全系数的影响。并与基于MIT-E3模型的有限元计算结果及其它文献中的算例进行验证,说明该方法的适用性。 相似文献
11.
12.
将所建立的考虑时间效应的超固结土统一硬化模型(时间UH模型)推广为能够考虑K0各向异性的弹黏塑性模型。基于广义非线性强度准则的变换应力三维化方法,将新模型扩展到三维应力状态。使用新模型预测K0固结土的一维和三轴等应变率加载试验,预测结果表明新模型能够合理反映应变率对K0固结土前期固结压力和应力应变曲线的影响。根据模型的基本方程,推导三轴压缩条件下不排水抗剪强度的理论公式,并将该公式的计算结果与试验结果进行对比,发现该公式能够反映不排水抗剪强度随超固结度和应变率的增大而提高的性质。 相似文献
13.
深厚表土层中立井井筒建设普遍采用冻结法,而深部冻土的原位力学特性是影响冻结壁力学特性及其安全稳定性的关键;现有的浅部冻土的试验方法,由于忽略了深、浅部土体固结、应力环境及形成工况的差异,已难以可靠地获得深部土的力学参数。基于长时高压K_0固结—冻结—恒轴压卸围压试验模式,通过三轴试验,研究了深部土重塑人工冻结黏土的强度与变形特征,以及固结时间、固结应力的影响规律。结果表明:卸围压路径下冻土试样呈现为黏–弹塑性破坏,固结时间为1~7 d时,其卸围压强度随固结时间的延长增长显著,而单位降温引起的强度增长速率受固结时间的影响不明显;随着固结时间延长至28 d,其卸围压强度受固结时间的影响不明显,但单位降温引起的强度增长速率增加显著;单位降温引起的冻土卸围压强度增长速率不受固结应力影响。 相似文献
14.
针对开挖土体复杂卸荷应力路径,按不同初始应力状态和卸荷应力比,对南水北调南干渠粉质黏土开展了K_0固结排水卸荷应力路径试验。试样首先在不同围压条件下K_0固结稳定,然后根据不同的轴向应力和径向应力卸荷比,进行卸荷试验,以模拟实际土体开挖过程中的应力路径。试验结果表明土体的应力应变特性与应力路径密切相关:不同卸荷应力比条件下,试样可能为压缩,先伸长再压缩或者为伸长变形;卸荷应力路径下压缩和伸长应力比临界值与初始固结状态和土性相关;相同平均应力增量条件下,卸荷应力比越小,试样体积膨胀绝对值越大;土体强度参数受加荷方式和应力路径影响不大。试验结果和常规三轴试验有显著区别,需要发展能够描述卸荷应力路径下的土体本构模型,对开挖土体开展符合工程实际的应力变形分析。 相似文献
15.
16.
为研究剪切应变速率对高含水量淤泥土力学性状的影响,运用SPAX-2000真三轴测试系统进行了不同周围压力和不同应变速率的固结不排水剪切试验,分析了淤泥土不排水抗剪强度和孔隙水压力随应变速率的变化规律。试验结果表明,高含水量淤泥具有“应变速率软化”现象。在剪切过程中(应变速率为10-6/s~10-2/s),淤泥土不排水抗剪强度随剪切应变速率增长而增长,符合指数变化规律;根据试验数据,建立了经验方程式,并求得其应变速率参数ηe1为0.130 5,ηe2为0.131 9;当变率增长10倍时,淤泥土的不排水抗剪强度增长率为13.12%。不同于强结构性黏土,淤泥土的强度随剪切应变速率呈渐进性变化,未出现明显临界速率转折点。在加载初期,孔隙水压力增长和最大孔隙水压力受应变速率影响较明显;在试验过程中,孔隙水压力变化具有一定波动性和滞后性。 相似文献