首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 812 毫秒
1.
建立了圆柱滚子在乏油工况下的线接触弹流润滑模型,并运用多重网格法计算得到线接触弹流润滑的压力和膜厚分布,研究乏油工况下供油膜厚、黏度等参数变化对弹流润滑特性的影响。模拟结果表明:增加供油膜厚,弹流润滑的膜厚增大且伴有颈缩现象,润滑压力在接触区近似为Hertz分布;黏度对压力影响较小,但对油膜厚度影响较大,随着黏度增加,油膜厚度减小;随着乏油情况的改善,接触区润滑膜厚增大,压力出现二次峰值,但供油量达到一定程度后润滑效果不再增强。  相似文献   

2.
乏油状态下准双曲面齿轮传动润滑机理分析   总被引:1,自引:0,他引:1  
在工程实际中,准双曲面齿轮不可避免地因润滑剂供给不足导致乏油问题,鉴于此,综合考虑了啮合区接触几何、粗糙形貌、入口区供油量、啮合界面速度矢量任意性等因素,建立了乏油状态下准双曲面齿轮传动界面任意速度矢量润滑分析模型,开展了乏油分析模型结果与文献实验数据的对比研究,数值分析了不同入口区供油量条件下准双曲面齿轮传动界面啮入点、啮合中点和啮出点的油膜演变规律,探讨了转速对不同供油量条件下传动界面润滑性能的影响。结果表明:乏油分析模型结果与文献实验数据取得了良好的一致性;随着入口区供油量的减小,3个啮合点油膜厚度的差异逐渐减小,当供油量减小到某一值时,3个啮合位置的油膜厚度基本一致;在不同的供油量下,转速对润滑状态的影响较为显著,油膜厚度随着转速的增加而升高,但是,转速升高到某一值时,乏油条件下的油膜厚度值将趋于稳定,而充分供油条件下的油膜厚度值将会继续增大。  相似文献   

3.
考虑圆锥滚子轴承的非等截面属性和脂润滑状态,基于润滑脂Power-law流变模型,结合脂膜能量方程和固体热传导方程,建立轴承滚子与滚道接触的非等温脂润滑模型,分析滚子修形、打滑、歪斜和倾斜等对接触副脂润滑热成膜性能和拖动性能的影响. 结果表明:在未发生倾斜或歪斜时,Lundberg对数母线修形滚子的最小膜厚略大于切交母线修形滚子,而压力峰值略小于切交母线修形滚子. 在考虑温度效应后,脂膜厚度减小,压力峰值增大. 倾斜运动导致滚子主要承载端的脂膜压力和颈缩量增加,膜厚减小,因此滚子修形应考虑倾斜运动的影响;歪斜运动对膜厚和压力分布的影响则相对较小. 滚子/滚道副的脂润滑拖动系数随打滑加剧呈现先增大后减小的趋势.  相似文献   

4.
面齿轮等温点接触弹流润滑分析   总被引:1,自引:1,他引:0  
建立面齿轮等温点接触弹流润滑模型,通过F O R T R A N语言编程计算面齿轮的油膜厚度和压力;分析小齿轮转速、面齿轮所受载荷和润滑油黏度对面齿轮润滑特性的影响。研究结果表明:转速和润滑油黏度越大,油膜厚度也越大,而载荷越大油膜厚度越小;二次压力峰随转速和润滑油黏度的增大而越明显,但随载荷的增大而趋于消失。  相似文献   

5.
为研究变形对有限长轴颈轴承弹流润滑特性的影响,利用Winkler弹性基础模型对其进行分析,使用压力和膜厚双重迭代方法进行数值模拟求解。其结果表明:载荷越大,刚性轴承与柔性轴承的油膜压力和厚度差异越大;在轴承表面变形的条件下,随载荷的增大,偏心率随转速增大而减小的幅度变小,偏位角随转速增大而增大的幅度亦变小;随转速的增大,偏心率随载荷增大而增大的幅度变大,偏位角随载荷增大而减小的幅度亦变大。此外,还研究了在定载荷条件下轴承宽度、厚度、润滑油黏度、间隙等参数对油膜压力、厚度及破裂位置的影响规律。该研究成果可为轴颈轴承的设计及其性能计算提供相应的理论参考。  相似文献   

6.
为了研究工况参数对湿式离合器接合特性的影响规律,基于Navier-Stokes方程、KE粗糙接触理论和传热理论,针对含沟槽湿式离合器建立接合特性综合数值模型. 利用自主研制的离合器试验装置,针对接合压力、润滑油(ATF)温度、相对转速、渗透性和沟槽等影响因素进行正交试验. 结果表明,接合压力不仅影响接合时间且对扭矩有影响,压盘接触瞬间的扭矩抖动取决于接合压力稳定性,接合完成瞬间的扭矩抖动是由动静摩擦系数差异造成的;润滑油温升高,黏度降低使粗糙峰接触延迟造成接合时间增长,接合扭矩减小;转速越高,接合时间越长;渗透性越高,油膜厚度下降越快,接合响应速度越快;沟槽宽度越大,接合扭矩的幅值越小,接合时间越长. 初始油膜厚度越大,接合初始阶段的油膜剪切扭矩越小.  相似文献   

7.
载荷和供油压力对浮环轴承润滑影响的理论研究   总被引:1,自引:0,他引:1  
针对浮环轴承双层间隙的结构特点,建立了其润滑模型.在考虑供油压力和油膜破裂的情况下,通过求解基于长轴承理论的雷诺方程,得到了内外油膜周向压力分布情况,并推导了油膜力的解析表达式.在给定浮环轴承结构参数的情况下,利用Matlab软件对润滑模型进行了计算和仿真.分析了诸如载荷、供油压力、转子转速等参数对浮环轴承静平衡位置、油膜连续性以及轴承内间隙润滑的影响.得出了较大的外载荷会导致较大的外油膜偏心率和外油膜空穴区扩大,而供油压力主要影响外油膜的偏位角的结论,并指出载荷的加大会使进入内间隙润滑油量在很宽的转速范围内减小,有可能会导致内膜贫油情况的发生,而增大润滑油注油压力会有效缓解这一现象的发生.  相似文献   

8.
针对不同润滑介质轴向柱塞机械关键摩擦副润滑特性,研制了运用电液控制技术控制油膜形态的试验系统.介绍了该系统基于膜厚反馈控制的配流副装置试验原理及其组成.结合配流副润滑理论模型,指出评价润滑性能的主要参数及其关系,仿真计算了伺服阀对油膜厚度控制的响应特性.配流副油膜平衡过程中反馈调节特性的模拟试验与该理论结果进行了对比分析.油润滑条件下,摩擦副间隙对泄漏流量影响显著.试验系统的膜厚动态反馈性能稳定,比例伺服阀频响对其影响较大,随着初始平衡厚度值的不同而不同,该控制方法可用于润滑膜试验系统的设计.  相似文献   

9.
波动载荷下静压支承油膜的数值仿真   总被引:2,自引:0,他引:2  
为了进一步优化静压支承系统的设计并为其安全运行提供依据,根据实际工程中的液体静压支承系统,运用CFD-ACE+建立了系统中油膜的数值模型,并进行波动载荷下动态数值模拟计算.根据计算结果,并对比理论公式,详细分析了在波动载荷下油膜承载力与刚度的变化特性以及供油速度对其变化特性的影响.结果表明:惯性作用使油膜厚度及承载力对载荷变化的响应存在一定延迟,并且该延迟受供油速度影响;油膜承载力随厚度的变化关系在载荷增大与减小的过程中并不重合;油膜刚度在载荷达到最大值与最小值时最不稳定.  相似文献   

10.
为探究润滑油在外部加热条件下的润滑能力以及油膜形态的变化情况,采用玻璃盘和金属旋转轴组成存在一定温差的摩擦副系统,搭建了使用激光位移传感器进行油膜厚度测量的可视化试验装置。通过观测不同参数影响下的油膜形态以及摩擦力大小发现,润滑油温度、转速等参数对于润滑油膜的形成及摩擦力有着重要的影响:当润滑油温度升高时,油膜厚度降低,摩擦力急剧增加;当转速增大时,油膜厚度增大,摩擦力减小,但是若转速持续增大,油膜厚度会逐渐趋于一个最大值,摩擦力的减小趋势减缓,甚至最后略有增加。应用这一实验系统,还可拍摄油膜气穴,气穴形态与文献所示非常相似。  相似文献   

11.
高参数工况下的气膜摩擦力对干气密封性能的影响不可忽视。基于密封系统和动静环的结构特点,建立了润滑气膜计算域模型,使用ICEM划分网格,采用Fluent软件数值模拟获得气膜压力分布和速度分布,最后通过牛顿内摩擦定律计算得到润滑气膜摩擦系数。结果表明,槽型参数不变,润滑气膜摩擦系数随转速的增大而增大,随介质压力及平均气膜厚度的增大而减小;工况参数不变,气膜摩擦系数随根径的增大而增大,随槽数及槽深的增大而减小,且在75°~76°螺旋角范围内较为稳定。  相似文献   

12.
基于实验和数值模拟方法,研究了入口雷诺数为840~2 449时静压油腔的承载性能.利用PIV粒子测速系统实验研究了入口雷诺数变化对油腔内部流场结构的影响,与数值模拟结果吻合良好;数值模拟了不同入口雷诺数时油腔上壁面压强和壁面剪应力的变化.结果表明:随着入口雷诺数的增大,涡的位置逐渐靠近封油边,涡的范围逐渐变大;涡心位置与入口雷诺数有函数关系;入口喷射导致油腔上壁面中心处压强出现峰值,峰值之后的压强呈恒定分布;上壁面剪应力在上壁面正对入口边缘处出现峰值会导致油膜破裂.  相似文献   

13.
极端工况条件下静压支承运行过程中的极易发生摩擦学失效且润滑状态极难获得,为解决此技术难题,设计一种新型油垫可倾式静压支承结构,形成静动压混合推力轴承,提出利用微间隙油膜形貌来表征静压支承润滑状态的想法。针对新型双矩形腔油垫可倾式静压支承,建立温升和功耗、热固耦合变形、流固耦合变形及油膜形状等数学模型。分析极端工况下微间隙油膜温度场和油膜压力场分布特征,求得摩擦副热力耦合变形,获取三维油膜形貌,判断静压支承润滑状态。搭建油膜厚度测量装置,获得油膜厚度状态,验证理论分析和数值模拟所获得的油膜形貌的正确性。结果表明:极端工况下该结构润滑效果大大改善,轻载高速时热变形起主导作用,油膜厚度差异较大。低速重载时力变形占主导地位,油膜较平滑。油腔外侧封油边交角处变形最大,此处油膜最薄,易发生摩擦学失效。  相似文献   

14.
本文对具有三角阻尼槽的平面配流摩擦副的静压支承油膜进行了理论分析和实验研究。并分析了油膜的静态和动态特性。还实测了摩擦副间形成的静态和动态油膜厚度,并与解析解和数值计算解进行比较,获得了很好的吻合。通过在不同压力和油温条件下的实验,分析了供油压力和供油温度不同时对油膜产生的影响。  相似文献   

15.
为了准确获得滑靴底面水膜特性,综合考虑了滑靴的倾覆姿态与磨损形貌,分析了滑靴的受力/力矩情况,基于Matlab软件实现了滑靴副动压水膜的精确求解.结果表明:当柱塞腔压力一定时,滑靴底面膜厚随转速增加而增大,在高压区3点膜厚相差很小,在低压区滑靴存在明显倾斜;在距上死点120°时,转速对滑靴底面压力场影响不大,在距上死点240°时,滑靴底面动压效应随转速增大显著增强.当转速一定时,滑靴底面膜厚和倾斜程度随柱塞腔压力增加而逐渐减小;在距上死点120°时,滑靴底面峰值压力随柱塞腔压力增大而增大,在距上死点240°时,滑靴底面压力随柱塞腔压力增大略有增加.滑靴的中心膜厚和最小膜厚随缸体转速的增加而增大,随柱塞腔压力升高而不断减小,但减小幅度逐渐放缓.该分析可以为水压轴向柱塞泵/马达滑靴副的设计和优化提供指导和借鉴.  相似文献   

16.
考虑轴受力产生变形引起的轴倾斜,采用流固耦合方法,直接求解Navier?Stokes方程,对滑动轴承系统中轴和润滑油膜进行三维瞬态分析,同时求解流场和固体域,得到油膜动态压力分布、轴心的运动轨迹和不同转速下油膜厚度分布. 结果表明,轴倾斜使油膜压力分布和轴心轨迹变化明显,最小油膜厚度减小,流场压力峰值增大. 通过对滑动轴承的三维瞬态分析可以预测轴承工作过程中实时的轴心轨迹、压力分布、油膜厚度等润滑特性,为滑动轴承的优化设计提供参考.  相似文献   

17.
简要说明了液体动压轴承的特性与润滑油的粘度、滑动速度、油膜厚度的关系,从而制定了特性的实验研究方法,通过本实验系统,测出了油膜压力分布曲线,轴承特性值与摩擦系数的关系曲线以及最小油膜厚度的实测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号