首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A feedforward compensation scheme with no Miller capacitors is proposed to overcome the bandwidth limitations of traditional Miller compensation schemes. The technique has been used in the design of an operational transconductance amplifier (OTA) with a dc gain of 80 dB, gain bandwidth of 1.4 GHz, phase margin of 62/spl deg/, and 2 ns settling time for 2-pF load capacitor in a standard 0.35-/spl mu/m CMOS technology. The OTA's current consumption is 4.6 mA. The OTA is used in the design of a fourth-order switched-capacitor bandpass /spl Sigma//spl Delta/ modulator with a clock frequency of 92 MHz. It achieves a peak signal-to-noise ratio of 80 and 54 dB for 270-kHz (GSM) and 3.84-MHz (CDMA) bandwidths, respectively and consumes 19 mA of current from a /spl plusmn/1.25-V supply.  相似文献   

2.
A highspeed highaccuracy fully differenttial operational amplifier (opamp) is realized based on noMillercapacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of lefthalfplane (LHP) zero caused by the feedforward path to counteract the negative phase shift of the nondominant pole. Compared to traditional Miller compensation method, the opamp obtains high gain and wide band synchronously without the polesplitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the openloop gain of the opamp is 118 dB with the unity gainbandwidth (UGBW)of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The opamp is especially suitable for the frontend sample/hold (S/H)cell and the multiplying D/A converter(MDAC) module of the highspeed highresolution pipelined A/D converters(ADCs).  相似文献   

3.
The use of a new frequency compensation scheme for a three-stage operational amplifier is presented. The use of a positive feedback compensation (PFC) is employed to improve frequency response when compared to nested Miller compensation. A set of design equations is derived to give insight into the sizing of the amplifier. In addition, some characteristics relevant to the low-voltage low-power circuits using operational amplifiers have been modeled. Finally, an optimization algorithm was used with the purpose of extracting the most efficient solution. The PFC is especially suitable for driving large capacitance loads. It improves frequency response, slew rate (SR), and settling time. Small compensation capacitors make it appropriate for integration in commercial CMOS processes. With an active area of 0.03 mm/sup 2/ and working at 1.5 V, the circuit dissipates 275 /spl mu/W, has more than a 100-dB gain, a gain bandwidth of 2.7 MHz, and 1.0 V/spl mu/s average SR while driving a 130-pF load. Both measured frequency and transient step response show that the amplifier is stable.  相似文献   

4.
An active-feedback frequency-compensation (AFFC) technique for low-power operational amplifiers is presented in this paper. With an active-feedback mechanism, a high-speed block separates the low-frequency high-gain path and high-frequency signal path such that high gain and wide bandwidth can be achieved simultaneously in the AFFC amplifier. The gain stage in the active-feedback network also reduces the size of the compensation capacitors such that the overall chip area of the amplifier becomes smaller and the slew rate is improved. Furthermore, the presence of a left-half-plane zero in the proposed AFFC topology improves the stability and settling behavior of the amplifier. Three-stage amplifiers based on AFFC and nested-Miller compensation (NMC) techniques have been implemented by a commercial 0.8-/spl mu/m CMOS process. When driving a 120-pF capacitive load, the AFFC amplifier achieves over 100-dB dc gain, 4.5-MHz gain-bandwidth product (GBW) , 65/spl deg/ phase margin, and 1.5-V//spl mu/s average slew rate, while only dissipating 400-/spl mu/W power at a 2-V supply. Compared to a three-stage NMC amplifier, the proposed AFFC amplifier provides improvement in both the GBW and slew rate by 11 times and reduces the chip area by 2.3 times without significant increase in the power consumption.  相似文献   

5.
Today and in the future, high frequency low voltage DC–DC converters are an effective power-management solution for fast transient response and small profile in portable electronic systems. This paper presents a robust feedforward compensation scheme with AC booster. An ac amplifier is added in parallel with the main path to compensate the high-frequency gain reduction, which improves gain-bandwidth (GBW) product and slew rate significantly. This approach takes the multistage error amplifier (EA) as an element in the compensation circuit instead of using passive elements used in traditional proportional-plus-integral-and-derivative (PID) compensation circuits. The positive phase shift of left-half-phase (LHP) zeros caused by the feedforward path and ac boosting path in the multistage EA is used to cancel the negative phase shift by the resonant poles of the power stage of buck DC–DC converter in order to compensate the DC–DC converters. A graphical loop-gain method is used to design the feedback compensation and analyze the closed-loop performances of the converter for the complexion arising from the presence of multiple poles of EA before crossover frequency in high frequency converters. The high gain, wide bandwidth, and high slew rate are achieved by the absence of traditional pole-splitting effect and the added ac booster. In addition, the design guidelines for this feedback compensation network realized by robust feedforward with AC booster compensation (RFACBC) scheme and multistage EA are established. When the proposed compensation networks were employed in 100 MHz buck DC–DC converter implemented in SMIC 0.18 μm CMOS process, the simulation results validate the feasibility and functionality of the RFACBC scheme and design guidelines. The closed-loop dc gain achieves over 60 dB with over 20 MHz GBW and 61° phase margin under wide range loads. Furthermore, the settling time is improved due to the advanced frequency compensation.  相似文献   

6.
An NMOS operational amplifier has been designed and fabricated using only enhancement mode MOSFETs in a circuit that employs a novel feedforward compensation scheme. Specifications achieved include high open loop gain (2200), low-power (15 mW or less depending on the load), fast settling time (0.1 percent settling time in 3 /spl mu/s for a 4 V input step and a 10 pF load), and small area. While this amplifier uses only a small number of transistors, its performance is comparable to that of recent depletion load amplifiers. Fewer critical steps are needed to fabricate this amplifier, making it attractive for large analog/digital LSI circuits.  相似文献   

7.
A new single-chip 16-bit monolithic digital/analog converter (DAC) with on-chip voltage reference and operational amplifiers has achieved /spl plusmn/0.0015% linearity, 10 ppm//spl deg/C gain drift, and 4-/spl mu/s settling time. Novel elements of the 16-bit DAC include: the fast settling open-loop reference with a buried Zener, a fast-settling output operational amplifier without the use of feedforward compensation, and a modified R-2R ladder network. Thermal considerations played a significant role in the design. The DAC is fabricated using a 20-V process to reduce device sizes and therefore die size. All laser trimming including temperature drift compensation is performed at the wafer level. The converter does not require external components for operation.  相似文献   

8.
A 100-MHz bipolar operational amplifier has a gain of 100 dB. The op amp owes its high unity-gain bandwidth and high gain to an all-n-p-n signal path and multipath nested Miller compensation (MNMC). The phase margin with a 100-pF load is 40° at 100 MHz and the amplifier settles in 60 ns to 0.1% on a 1-V step. For comparison, a similar op amp without the multipath technique has been realized. The unity-gain bandwidth of this nested Miller compensation (NMC) op amp is 60 MHz and the settling time is 70 ns. Theory and measurements confirm that the multipath technique almost doubles the bandwidth of nested Miller compensated amplifiers  相似文献   

9.
为了满足低压电路的工作要求,我们设计了一种新型的三级运放.该运放采用单电容米勒补偿与交叉多径嵌套补偿结合的方法,利用前馈通路在左半平面形成的零点来补偿其在主通路中的极点.通过使用TSMC 0.18μm工艺仿真.仿真结果表明:该运放能够获得113 dB的增益.有着87°的相位裕度,在1.8 V电源电压和120 pF负债的情况下.整体功耗只有0.534 mW.由此可见,这种新型的补偿方式能够有效地对运放进行补偿,并且使运放获得较高的增益以及较大相位裕度.  相似文献   

10.
A novel damping-factor-control frequency compensation (DFCFC) technique is presented in this paper with detailed theoretical analysis, This compensation technique improves frequency response, transient response, and power supply rejection for amplifiers, especially when driving large capacitive loads, Moreover, the required compensation capacitors are small and can be easily integrated in commercial CMOS process. Amplifiers using DFCPC and nested Miller compensation (NMC) driving two capacitive loads, 100 and 1000 pF, were fabricated using a 0.8-μm CMOS process with Vtn=0.72 V and Vtp=-0.75 V. For the DFCFC amplifier driving a 1000-pF load, a 1-MHz gain-bandwidth product, 51° phase margin, 0.33-V/μs slew rate, 3.54-μs settling time, and 426-μW power consumption are obtained with integrated compensation capacitors. Compared to the NMC amplifier, the frequency and transient responses of the DFCFC amplifier are improved by one order of magnitude with insignificant increase of the power consumption  相似文献   

11.
This paper presents a multistage amplifier for low-voltage applications (<2 V). The amplifier consists of simple (noncascode) low gain stages and is stabilized using a nested transconductance-capacitance compensation (NGCC) scheme. The resulting topology is similar to the well known nested Miller compensation (NMC) multistage amplifier, except that the proposed topology contains extra G m feedforward stages which are used to enhance the amplifier performance. The NGCC simplifies the transfer function of the proposed multistage amplifier which, in turn, simplifies its stability conditions. A comparison between the NGCC and NMC shows that the NGCC has wider bandwidth and is easier to stabilize. A four-stage NGCC amplifier has been fabricated using a 2-μm CMOS process and is tested using a ±1.0 V power supply. A dc gain of 100 dB has been measured. A gain bandwidth product of 1 MHz with 58° of phase margin and power of 1.4 mW can be achieved. The op amp occupies an active area of 0.22 mm2. Step response shows that the op amp is stable  相似文献   

12.
A fast offset compensation method for high-gain amplifiers is presented that leverages a novel peak detector design and a dynamic, multi-tap feedback system to achieve roughly three orders of magnitude improvement in settling time over traditional compensation methods. Design tradeoffs between gain, bandwidth, power dissipation, and noise performance of the limit amplifier are discussed. Measured results of a custom 3.125 Gb/s limit amplifier in 0.18 /spl mu/m CMOS employing the proposed compensation technique demonstrate a sub-1-ms settling time while still achieving less than 4 ps rms output jitter with a 2.5 mV peak-to-peak input at 2.5 Gb/s.  相似文献   

13.
Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 μm. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 μW.  相似文献   

14.
Due to the rising demand for low-power portable battery-operated electronic devices, there is an increasing need for low-voltage low-power low-drop-out (LDO) regulators. This provides motivation for research on high-gain wide-bandwidth amplifiers driving large capacitive loads. These amplifiers serve as error amplifiers in low-voltage LDO regulators. Two low-power efficient three-stage amplifier topologies suitable for large capacitive load applications are introduced here: single Miller capacitor compensation (SMC) and single Miller capacitor feedforward compensation (SMFFC). Using a single Miller compensation capacitor in three-stage amplifiers can significantly reduce the total capacitor value, and therefore, the overall area of the amplifiers without influencing their stability. Pole-splitting and feedforward techniques are effectively combined to achieve better small-signal and large-signal performances. The 0.5-/spl mu/m CMOS amplifiers, SMC, and SMFFC driving a 25-k/spl Omega///120-pF load achieve 4.6-MHz and 9-MHz gain-bandwidth product, respectively, each dissipates less than 0.42 mW of power with a /spl plusmn/1-V power supply, and each occupies less than 0.02 mm/sup 2/ of silicon area.  相似文献   

15.
Some performance results of the Cartesian feedback and feedforward linearization techniques applied to a class-A power amplifier operating at 28 GHz are presented. The performance of the combination of HMMC-5040 (driver) and HMMC-5033 (power amplifier) is used as benchmark for simulation analysis. This analysis is addressed to show the key aspects on spectral regrowth due to phase margin and loop gain for Cartesian feedback, and time delay, phase and gain mismatch for feedforward. A 16 QAM digital signal at 10 Mbits/s filtered with a squared raised cosine filter with /spl alpha/=0, 25 is used as test signal.  相似文献   

16.
There are certain radar receivers where the settling time of an AGC loop is unacceptable and an amplifier is required which will compress the dynamic range instantaneously. A common technique for accomplishing this is to use a logarithmic amplifier. This has other advantages in radar applications in that a logarithmic amplifier can assist in separating wanted signals from unwanted signals known as `clutter' caused by unwanted targets such as raindrops. In systems such as MTI radar systems, where it is required to detect moving targets, the phase information is important hence the logarithmic output must be at the IF frequency. In order to preserve the phase information the phase shift or delay through the log amplifier should not vary with input signal level. This type of amplifier is known as a true logarithmic amplifier. The device described in this paper is capable of producing a true logarithmic amplifier with phase matching of /spl plusmn/4/spl deg/ over an 80 dB input dynamic range at 70 MHz.  相似文献   

17.
This paper presents a new reversed nested Miller compensation technique for multistage operational amplifier (opamp) design. The new compensation technique inverts the sign of the right half complex plane zero and shifts the frequency of the complex conjugate poles to a higher frequency. Simulation results indicate that the gain-bandwidth product and settling time are improved by factors of two and three, respectively, without degrading stability and power consumption. To verify the proposed technique, a three-stage opamp is fabricated with 0.6-/spl mu/m CMOS technology. The measured results of the test circuit agree with the results that are obtained from theoretical analysis and circuit simulation.  相似文献   

18.
A fully differential operational amplifier has been designed and fabricated for a novel high resolution and high frequency analog-to-digital converter(>12-bit). The amplifier mainly consists of folded cascode structure with current source as output loads and common-mode feedback circuits. The technique of feedforward compensation is used in order to improve the settling time and gain bandwidth (GBW) of this amplifier. This amplifier is integrated in 0.8 mm BiCMOS process with an active die area of 0.1 mm2. The DC gain of this amplifier is 90 dB. The GBW and phase margin of this amplifier is 900 MHz and 47°, respectively. The power dissipation is minimized by using BiCMOS technology and is about 25 mW for 2 pF load capacitance. This level of performance is competitive with CMOS and BiCMOS operational amplifier circuits previously reported by nearly two orders of magnitude.Ecole Polytechnique of the University of Montreal  相似文献   

19.
This paper presents a low-power stability strategy to significantly reduce the power consumption of a three-stage amplifier using active-feedback frequency compensation (AFFC). The bandwidth of the amplifier can also be enhanced. Simulation results verify that the power dissipation of the AFFC amplifier is reduced by 43% and the bandwidth is improved by 32.5% by using the proposed stability strategy. In addition, a dynamic feedforward stage (DFS), which can be embedded into the AFFC amplifier to improve the transient responses without consuming extra power, is proposed. Implemented in a 0.6-/spl mu/m CMOS process, experimental results show that both AFFC amplifiers with and without DFS achieve almost the same small-signal performances while the amplifier with DFS improves both the negative slew rate and negative 1% settling time by two times.  相似文献   

20.
A new method to compensate three-stage amplifier to drive large capacitive loads is proposed in this paper. Gain Bandwidth Product is increased due to use an attenuator in the path of miller compensation capacitor. Analysis demonstrates that the gain bandwidth product will be improved significantly without using large compensation capacitor. Using a feedforward path is deployed to control a left half plane zero which is able to cancel out first non-dominant pole. A three stage amplifier is simulated in a 0.18 μm CMOS technology. The purpose of the design is to compensate three-stage amplifier loading 1000 pF capacitive load. The simulated amplifier with a 1000 pF capacitive load is performed in 3.3 MHz gain bandwidth product, and phase margin of 50. The compensation capacitor is reduced extremely compared to conventional nested miller compensation methods. Since transconductance of each stage is not distinct, and it is close to one another; as a result, this method is suitable low power design methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号