共查询到19条相似文献,搜索用时 93 毫秒
1.
改进的粒子群优化模糊C均值聚类算法 总被引:5,自引:4,他引:5
针对传统模糊C均值聚类算法(FCM)存在对初值敏感和易陷入局部收敛的缺陷,利用改进的粒子群算法对FCM进行优化,提出一种新的模糊C均值聚类算法Improved PSOFCM,并建立基于熵的聚类有效性函数,对聚类算法的性能进行客观评价。数据集实验表明,Improved PSOFCM算法不仅能克服传统FCM算法的不足,而且在聚类正确率和有效性上也优于基于粒子群与基于遗传优化的FCM算法。 相似文献
2.
基于粒子群优化的模糊C-均值聚类改进算法 总被引:3,自引:3,他引:3
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果. 相似文献
3.
4.
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 相似文献
5.
王杨 《计算机与数字工程》2014,42(9):1610-1612
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高. 相似文献
6.
7.
针对模糊C均值聚类算法受初始聚类中心影响过大以及易于陷入局部极值的问题,采用具有Levy flight模式且具有很强全局搜索能力的布谷鸟搜索算法,对模糊C均值聚类算法初始聚类中心进行优化,并把优化后的模糊C均值聚类算法应用于网络入侵检测。实验结果显示,经过优化后的模糊C均值聚类算法具有较好的运行速度和聚类效果,对入侵行为的检测效果良好。 相似文献
8.
9.
模糊聚类算法为了保证算法的收敛性,要求模糊指标m取值大于1,这限制了算法的普适性。提出广义多变量模糊C均值聚类算法(GMFCM),在多变量模糊C均值聚类算法(MFCM)的基础上,利用粒子群优化算法对分量模糊隶属度进行优化估计,进而将模糊指标拓展到m>0的情况,同时采用梯度法得到算法聚类中心迭代公式。GMFCM理论分析了模糊指标m扩展的原理,研究了模糊指标m在不同取值情况下的性质,解释了模糊指标m的实际意义,讨论了GMFCM算法的收敛性。GMFCM继承了MFCM算法的样本分量区分性能,弥补了MFCM算法聚类中心分量与样本分量重合时的不完备性,突破了模糊聚类算法对参数m的约束,提高了模糊聚类算法的普适性。基于gauss数据集和UCI数据集的仿真测试验证了所提算法的有效性。 相似文献
10.
为了解决模糊C-均值(FCM)聚类算法的固有缺陷,提出基于混沌粒子群的模糊C-均值聚类算法(CPSO-FCM).针对FCM对聚类初始值的敏感度问题,辅以粒子群算法以避免随机选取的聚类数和聚类中心所导致的结果不一致.通过引入混沌序列,在粒子的位置和速度上与原有粒子群优化算法所得计算值加以比较,取优者.这样不仅能够提高算法全局搜索能力,也可有助于粒子跳出局部最优.同时定义加速因子与逃逸算子对粒子移动速度加以优化,以加速收敛.实验结果表明,CSPO-FCM算法稳定性强,收敛速度快,且聚类的准确率高,效果较好. 相似文献
11.
12.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。 相似文献
13.
14.
提出一种新的图象分类算法椈谖⒘H旱腒均值聚类图象分类算法.将此算法和K均值聚类算法以及微粒群图像分类算法分别应用于MRI人脑图象的分类,并进行了比较.实验结果表明:基于微粒群的K均值聚类图象分类算法具有较好的全局收敛性,不仅能有效克服K均值算法易陷入局部极小值的缺点,且全局收敛性能优于微粒群图像分类算法. 相似文献
15.
16.
提出了一种基于拉子群优化的可能性c均值(Possibilistic Gmeans, PCM)聚类改进方法。该方法首先通过
改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏
感,提高聚类的精度;其次,通过粒子群优化(Particle Swarm Optimization, PSO)算法对编码进行优化,以有效地克服
PCM聚类算法容易导致聚类一致性和陷入局部最优解的缺点,减少算法的迭代次数。通过人造数据集和UCI数据
集上的实验,表明该算法在计算复杂度、聚类精度和全局寻优能力方面表现得较为突出。 相似文献
17.
18.
基于粒子群优化算法的数据流聚类算法 总被引:1,自引:0,他引:1
针对当前基于滑动窗口的聚类算法中对原始数据信息的损失问题和提高聚类质量和准确性,在现有基于滑动窗口模型数据流聚类算法的基础上,提出了一种基于群体协作的粒子群优化算法(PSO)的新数据流聚类算法。这种优化的新数据流聚类算法利用改进的时间聚类特征指数直方图作为数据流的概要结构以及应用PSO在聚类过程中对聚类质量的局部迭代优化。实验结果表明,此方法有效减少了内存的开销,解决了对原始数据信息损失的问题。与传统的数据流聚类算法相比,基于粒子群优化算法的数据流聚类算法在聚类质量和准确性上明显优于传统的数据流聚类算法。 相似文献
19.
基于小生境微粒群算法的山峰聚类 总被引:2,自引:0,他引:2
将山峰聚类法和小生境微粒群算法结合,构建一种基于小生境微粒群算法的山峰聚类法:首先在数据空间上构造网格,进而构造出表示数据密度指标的山峰函数,然后将山峰聚类方法中通过顺序地削去山峰函数来选择聚类中心这一步用小生境微粒群算法代替,通过执行小生境微粒群算法对山峰函数进行多峰函数寻优,找到山峰函数的每一个峰,即可确定聚类中心的个数和每一个聚类中心位置。仿真实验表明,构建的新算法能够弥补传统聚类算法的一些缺陷。 相似文献