首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
PVC/木粉复合材料的性能研究   总被引:7,自引:1,他引:6  
采用聚氯乙烯树脂和木粉制得PVC/木粉复合材料。研究了木粉的粒径、用量,表面处理剂的类型、用量DOP以及抗冲改性剂CPE的用量对复合材料的力学性能的影响。结果表明:当木粉的粒径为过20目筛、用量为30%表面处理剂为木粉用量的1.5%,DOP和CPE的用量为PVC的用量的10%时,所得的复合材料的综合性能最佳。  相似文献   

2.
木粉的碱化处理对木塑复合材料性能的影响   总被引:7,自引:0,他引:7  
采用木粉填充高密度聚乙烯(HDPE)制备复合材料。为增强亲水性的木粉和憎水性的HDPE基质之间的化学亲和力,对木粉碱化处理。研究了相容剂用量和木粉的碱化处理对复合材料力学性能的影响。结果显示,马来酸酐接枝HDPE可明显提高复合材料的力学性能.表现出很好的增容效果:与用未碱化处理的木粉填充的复合材料相比,木粉的碱化处理使复合材料的弯曲强度和弯曲模量分别下降20.4%和36.2%:在不使用相容剂的情况下,木粉的碱化处理也会使复合材料的拉伸强度下降.但在使用适量相容剂后.则可使复合材料的拉伸强度从未处理时的30.3MPa提高到36.5MPa,与纯HDPE相比,拉伸强度提高了44.8%。  相似文献   

3.
聚烯烃/木粉微孔复合材料结构与性能研究   总被引:2,自引:2,他引:0  
制备了聚烯烃/木粉微孔复合材料,研究了基体树脂种类、木粉用量、发泡母粒用量等因素对复合材料密度、孔隙率、力学性能和微观结构的影响。结果表明:基体树脂性能对木塑微孔复合材料的拉伸强度影响较大;增加木粉用量,复合材料力学性能下降,密度上升;增加发泡母粒用量,复合材料的孔隙率增大,密度下降,力学性能先升后降;试验范围内,发泡母粒最佳用量约为1%。  相似文献   

4.
以马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂,制备了废旧聚烯烃塑料/木粉复合材料,探讨了木粉用量对复合材料加工性能和力学性能的影响。结果表明,随着木粉用量从10%增加到30%,复合材料的熔融时间、熔融能耗以及热稳定性变化不大,剪切扭矩增加了32.4%;且当PP-g-MAH含量为9%、木粉用量为20%左右时,木粉能够有效发挥增韧增强作用,此时复合材料的力学性能最好。  相似文献   

5.
硅烷偶联剂对HDPE/木粉复合材料性能的影响   总被引:7,自引:0,他引:7  
使用经硅烷偶联剂HP-172和HP-174改性的木粉制备了HDPE/木粉复合材料,研究了偶联剂用量对其性能的影响。实验结果表明:当使用1.5%的HP-172处理木粉后,可使复合材料的各项力学性能提高30%以上;HP-174的用量为1%~1.5%也得到了较好的改性效果。通过FIR和SEM分析发现,硅烷偶联剂可与木粉表面发生化学反应,从而提高了HDPE与木粉的界面粘合强度,使复合材料的力学性能得以提高  相似文献   

6.
LDPE基木塑复合材料制备工艺及性能研究   总被引:1,自引:0,他引:1  
以马来酸酐(MAH)和(或)过氧化二异丙苯(DCP)复合处理木粉(Wood)或预先将MAH和DCP与低密度聚乙烯( LDPE)进行熔融接枝反应,采用挤出混炼和注射成型的方法制备了LDPE基木塑复合材料.考察了MAH、DCP含量及制备工艺等对复合材料加工性能、力学性能及动态热机械性能的影响;并借助扫描电子显微镜分析了其作用机理.结果显示:与先制备的MAH-g-PE相比,直接用MAH和DCP复合处理木粉所制备木粉/LDPE复合材料(木粉质量分数40%)具有更优的力学性能,其冲击强度提高了40%左右,而且加工平衡扭矩仅为前者的1/3;SEM分析表明:前者中木粉存在明显的团聚现象;此外,MAH和DCP均有相对最佳用量,分别为木粉的0.5%和LDPE的0.3% ~0.5%.  相似文献   

7.
董金虎 《中国塑料》2016,30(9):82-87
以木粉和废旧聚烯烃塑料为原材料制备了废旧聚烯烃/木粉复合材料,讨论了不同助剂对复合材料加工性能的影响,并进一步探讨了马来酸酐接枝聚丙烯(PP-g-MAH)用量对复合材料的加工性能、力学性能以及微观结构的影响。结果表明,在复合材料中同时添加PP-g-MAH和乙烯-醋酸乙烯脂(EVA),其加工性能明显优于只添加EVA的复合材料;EVA用量为2 %时,PP-g-MAH用量高于9 %时,复合材料具有较低的剪切扭矩和熔融能耗;PP-g-MAH用量低于12 %时,复合材料的综合力学性能较好;而PP-g-MAH用量为9%~12%时,废旧聚烯烃形成了较为完善的连续相结构,此时复合材料的加工性能和力学性能均较好。  相似文献   

8.
本文采用注塑发泡法制备了木粉/PP发泡复合材料。考察了发泡剂用量、木粉含量对发泡复合材料性能的影响。结果表明,发泡后的复合材料密度明显降低,发泡剂含量为1.5%时发泡复合材料的密度降低了17%,冲击强度提高了20%。木粉含量增加小幅提高了发泡复合材料的密度,降低了其力学性能。  相似文献   

9.
采用聚氯乙烯(PVC)与木粉制得PVC/木粉复合材料。研究了木粉的含量、偶联剂的类型和含量、邻苯二甲酸二辛酯(DOP)和抗冲改性剂氯化聚乙烯(CPE)的用量对复合材料性能的影响以及润滑剂含量对加工性能的影响。结果表明,当PVC与木粉用量比为7.0:3.0、偶联剂为木粉用量1.5%、DOP用量为PVC用量20.0%、CPE用量为PVC用量10.0%、润滑剂用量为PVC用量1.2%时,所得复合材料的综合性能较好。  相似文献   

10.
以聚丙烯为基体,木粉为填料,采用机械共混、二次挤出共混和注塑成型方法制备不同木粉含量的PP/木粉复合材料,并且测定了PP/木粉复合材料的力学性能。实验结果表明:随着木粉用量的增加,复合材料拉伸强度逐渐增大;木粉用量为60%时,复合材料拉伸强度达到最大值36.04 MPa;木粉用量为80%时,复合材料拉伸强度降低到34.60 MPa。木粉的含量由20%增加到80%,复合材料弹性模量由579.12 MPa增加到869.80MPa,断裂伸长率从18.92%降低到7.39%,冲击强度由9.33 kJ/m2降低到7.76 kJ/m2。这是因为PP/木粉复合材料体系中随着木粉含量的增加,木粉起到了应力集中的作用,使材料变脆,冲击强度降低。  相似文献   

11.
吴广力  焦剑  汪雷  张胜平  蒋志培 《粘接》2012,(10):44-49
采用硅烷偶联剂对SBA-15进行了有机化修饰(即:SBA-15-G),利用在位分散聚合法制备了SBA-15/PMMA和SBA-15-G/PMMA杂化材料,研究了SBA-15和SBA-15-G在PMMA基体中的介观有序性和分散性以及对杂化材料的力学性能的影响规律。结果表明有机化修饰使SBA-15孔容、孔径和比表面积减小,表面亲油性提高;SBA-15和SBA-15-G在基体中仍保持长程有序结构;有机化修饰改善了SBA-15在基体中的分散性和与基体的界面结合,显著增强了杂化材料的力学性能。当SBA-15-G为4%时,杂化材料的拉伸强度和模量分别提高了45%和40.4%,当SBA-15-G为2%时冲击强度达到最大,比基体提高了36.6%。,  相似文献   

12.
研究了4种偶联剂KH-550、KH-792、WD-60和HG-305对白炭黑/SBR复合材料力学性能和热空气老化性能的影响。研究结果表明:当KH-550用量为4.0份时,复合材料的综合力学性能最好,与未改的白炭黑/SBR复合材料相比,其拉伸强度和撕裂强度分别提高了77%和24%;复合材料的老化实验结果表明,经偶联剂改性的复合材料的耐热老化性能有所下降,其中HG-305改性的复合材料抗老化性较好。  相似文献   

13.
研究不同玻璃纤维(GF)填充量和不同处理工艺对PVC/ABS合金力学性能以及维卡软化温度的影响.研究结果表明:随着玻璃纤维添加份数的增加,PVC/ABS合金的拉伸性能和维卡软化温度有不同程度的提高,缺口冲击强度有所下降.其中经硅烷偶联剂改性过的玻璃纤维力学性能和维卡软化温度都会好于未改性的玻璃纤维.  相似文献   

14.
唐勇  张翔  张帆 《广州化工》2010,38(8):103-104,111
研制了用硅烷和钛酸酯偶联剂表面改性后的氢氧化镁和聚丙烯的复合材料,研究了用不同表面活性剂改性的阻燃剂氢氧化镁的用量对复合材料阻燃性能和力学性能的影响。结果表明,硅烷偶联剂表面改性后的氢氧化镁能更好改善复合材料的力学性能,显著提高聚丙烯的阻燃性能,在用量为65%时,氧指数达到31.9%,垂直燃烧特性可达UL94V-0级。  相似文献   

15.
采用熔融共混法制备了聚乳酸(PLA)/Lyocell纤维复合材料,并通过力学性能、差示扫描量热仪、维卡软化温度及扫描电子显微镜等研究了硅烷偶联剂(KH550)和六亚甲基二异氰酸酯(HMDI)对复合材料结构与性能的影响。结果表明,与KH550相比,HMDI界面改性的效果较佳;随着偶联剂HMDI含量的增加,复合材料的力学性能呈现先增后减的趋势,当其含量为1 %(质量分数,下同)时,复合材料的维卡软化温度较未添加偶联剂时提高了5.1 ℃,且拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度也比未添加HMDI时分别提高了57.1 %、10.5 %、32.3 %、19.5 %和23.7 %。  相似文献   

16.
针状硅酸盐的表面改性及其橡胶复合材料的力学性能   总被引:2,自引:0,他引:2  
考察了不同改性剂及其用量对针状硅酸盐(FS)表面改性和FS/橡胶复合材料力学性能的影响。结果表明,FS存在结构羟基,其中一些羟基具有化学反应活性。硅烷偶联剂、钛酸酯偶联剂和十六烷基三甲基溴化铵对FS具有较好的改性效果。硅烷偶联剂Si69改性FS增强效果最好,其最佳用量为2.4质量份;改性FS用量的增加改善了复合材料的力学性能;改性FS对丁苯橡胶、三元乙丙橡胶、丁腈橡胶、羧基丁腈橡胶具有良好的增强效果。  相似文献   

17.
不同相容剂对PP/木粉复合材料力学性能的影响   总被引:15,自引:3,他引:12  
刘文鹏  李炳海 《塑料》2005,34(5):21-24
研究了3种相容剂和3种偶联剂分别在单独使用和配合使用情况下对PP/木粉(质量比50/50)复合材料力学性能的影响。相容剂PP-g-MAH、PE-g-MAH、SBS-g-MAH单独使用发现:SBS-g-MAH使材料综合性能最好,PE-g-MAH对冲击强度提高明显。硅烷偶联剂HP-172在提高复合材料的冲击强度和拉伸强度方面较好,HP-174对弯曲性能改善较好,钛酸酯偶联剂NDZ-201仅对弯曲模量有所改善,而对其它性能改善不大。相容剂与偶联剂共同使用具有协同效应,其中HP-174与SBS-g-MAH并用效果最好,使各项力学性能都有提高。  相似文献   

18.
碳纤维布增强聚苯硫醚复合材料的性能研究   总被引:5,自引:0,他引:5  
研究碳纤维布的含量、表面处理方法及填料等对聚苯硫醚复合材料性能的影响。结果表明,随着碳纤维布含量的增加,复合材料的拉伸强度、冲击强度提高;碳纤维布经过表面处理后与聚苯硫醚的粘接强度大大提高,其中用丙酮浸泡的效果好于高温热处理;填料硅灰石经偶联处理后加入复合材料中,可提高材料的力学性能和耐热性。  相似文献   

19.
《Polymer Composites》2017,38(12):2798-2805
The thermoplastic matrix composites have gained great importance in last three decades. The chopped basalt fiber (mineral fiber) is considered to be a good fiber due to excellent properties as potential reinforcement of composite materials. In this work, composites of chopped basalt fiber (6 mm) with thermoplastic material Nylon‐6 (Polyamide‐6) were prepared and its mechanical and morphological properties were evaluated for automobile applications. The melt blending was carried out in corotating twin‐screw extruder and injection‐molded test samples were prepared for the analysis. The test samples of composite without coupling agent prepared by varying the loading of basalt fiber content of 5%, 10%, 15%, 20%, and 25% by weight and with coupling agent composite loading of Nylon‐6 and basalt fiber content were kept constant and the coupling agent (PE‐g‐MA) loading were changed as 1, 2, 3, 4, and 5 phr. The Mechanical and SEM properties were evaluated. From the test results, it was observed that the mechanical properties were improved with increasing coupling agent ratio. SEM images show good dispersion and adhesion of matrix and reinforcement. POLYM. COMPOS., 38:2798–2805, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号