首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
描述了棒束子通道内流速分布,壁面剪应力分布和湍流雷诺应力张量分布的实验研究。由四根棒组成的棒束平行对称地布置在一个矩形流道内。试验棒的中心距与棒直径之比为:P/D=1.148,而壁距与棒直径之比分别为W_1/D=1.045和W_2/D=1.074。两种不同几何条件下,实验中雷诺数分别为6.11×10~4和7.0×10~4。实验结果表明,棒束子通道内的湍流结构与圆管内的湍流结构有很大差别。特别是在棒和通道壁之间的窄缝区存在着相当强的轴向和周向湍流强度,因而那里也有相当强的湍流动能,这显然是由于通过棒-壁窄缝处强烈的湍流脉动流所造成的。和过去进行的非对称布置的子通道实验(子通道内有相同几何参数P/D及W/D,但与相邻子通道几何非对称地布置于同一矩形通道内)相比,发现对称子通道情况下子通道之间通过棒-棒窄缝处的湍流动量迁移例很小,可以忽略不计。壁面剪应力分布的实验值和用VELASCO程序计算结果相对比,发现两者之间有明显的差异,尤其是在棒—壁窄缝区,差异更大。建议有必要发展比现有程序更为完善的分析计算程序,以便提高对棒束子通道湍流流动的计算精度。  相似文献   

2.
采用URANS(UnsteadyReynoldsAveragedNavierStokes)方法对不同棒束结构稠密栅元通道(P/D=1.001~1.2)内的湍流流动进行CFD模拟。研究分析了不同Re(Re=5000~215000)的湍流流动的主流速度、壁面剪应力、湍动能等参数。研究表明:在较稠密的棒束(P/D<1.1)通道内,P/D的变化对子通道内主流速度和剪应力分布均有较大影响。本文的模拟结果也验证了在达到临界P/D前(即使δ/D<0.011),交混因子Y和δ/D成反比关系。对于固定的棒束结构(P/D=1.062),当Re达到一定值(Re=9600)时,子通道内主流速度和剪应力分布对Re的变化不敏感。  相似文献   

3.
为了模拟反应堆燃料元件棒束子通道间的湍流交混,进行了电加热九根棒束子通道间的单相湍流交混的热态实验。实验参数的范围是:p=0.3~1.4MPa,p/d=10.5/8=1.3125,Re=3×10~3~9×10~4:T_(i)=10~100℃,N=2~13kW。根据实验数据,得出了下列计算式: W_″/μ=0.0095Re~(0.97) 本实验结果与T.Vander Ros的结果非常接近。  相似文献   

4.
矩形窄缝通道内湍流充分发展区流动边界层探析   总被引:3,自引:1,他引:2  
从宏观特性比较分析的角度出发,通过计算流体动力学(CFD)微观结果来探析矩形窄缝通道内湍流充分发展区边界层分布的特性.研究结果表明,从宏观角度看,一些适用于常规通道的经典公式仍然通用于矩形窄缝通道;现有的实验结果基本支持湍流充分发展区矩形窄缝通道内的流动和传热规律符合常规通道内特点的结论.对多种湍流模型模拟的结果与经典...  相似文献   

5.
板状燃料元件中的矩形窄缝通道具有宽高比大的几何特征,高度方向速度梯度大、分布陡峭,发生过冷沸腾时,近壁面汽泡运动行为将受其影响而改变,其中汽泡滑移现象对沸腾换热影响较大。本文针对矩形窄缝通道中的汽泡滑移行为,构建了包含滑移热流的壁面热流分配模型,并建立机理性的汽泡受力模型和滑移模型计算汽泡脱离直径、浮升直径和滑移距离等辅助参数,开发了一套适用于矩形窄缝通道内向上流动沸腾的壁面沸腾模型。选用Nuthel窄缝通道沸腾实验进行数值模拟验证,结果表明:本文模型可以较好地预测1~4 MPa中低压工况窄缝通道向上流动沸腾的壁面过热度,最大误差相比RPI模型由80%降低至17%;蒸发热流份额和近壁面空泡份额相比RPI模型更低。  相似文献   

6.
板状燃料元件中的矩形窄缝通道具有宽高比大的几何特征,高度方向速度梯度大、分布陡峭,发生过冷沸腾时,近壁面汽泡运动行为将受其影响而改变,其中汽泡滑移现象对沸腾换热影响较大。本文针对矩形窄缝通道中的汽泡滑移行为,构建了包含滑移热流的壁面热流分配模型,并建立机理性的汽泡受力模型和滑移模型计算汽泡脱离直径、浮升直径和滑移距离等辅助参数,开发了一套适用于矩形窄缝通道内向上流动沸腾的壁面沸腾模型。选用Nuthel窄缝通道沸腾实验进行数值模拟验证,结果表明:本文模型可以较好地预测1~4 MPa中低压工况窄缝通道向上流动沸腾的壁面过热度,最大误差相比RPI模型由80%降低至17%;蒸发热流份额和近壁面空泡份额相比RPI模型更低。  相似文献   

7.
棒束子通道间冷却剂的交混作用能显著降低棒束周向壁面的温差,为进一步了解紧密栅棒束内特殊的流场结构,以水为工质,对P/D=1.1的双排六棒束方形通道内的流动进行了试验研究与数值模拟。采用流场示踪方法,在Re =2 000~40 000范围内拍摄了紧密栅内棒壁间瞬态流动可视化信息,捕捉到大尺度类周期性脉动结构,并获得了该脉动流的相关特征参数。结果表明:当Re≥5 000时,大尺度脉动流发生,并在实验工况内呈很强的周期性,脉动流的波长与Re无关,脉动主频率与Re成正比;采用SSG湍流模型对相同截面通道内的流动进行了非稳态计算,模拟出棒壁狭缝处的大尺度类周期性脉动行为,计算所得脉动流各项参数与试验值符合良好。  相似文献   

8.
为准确预测低普朗特数流体在燃料组件棒束子通道内的传热特性,需选取合适的湍流普朗特数模型。针对5种不同的湍流普朗特数模型,基于三角形棒束换热关联式,研究采用剪切应力传输(Shear Stress Transfer,SST)k-ω湍流模型,分析不同的棒束子通道结构,并与液态铅铋实验验证的换热关联式计算结果进行对比,分析不同棒径与节径比条件下各种湍流普朗特数模型的适用性。分析研究结果表明,整体湍流普朗特数模型不仅与雷诺数Re、贝克莱数Pe有关,还与节径比P/D有关;在节径比1.3~1.7范围内Kays学者提出的局部湍流普朗特数模型模拟结果与Mikityuk关系式计算值较为吻合;各种湍流普朗特数模型均有最佳的节径比适用范围。因此,相关模型能够用于不同节径比条件下三角形棒束子通道内铅铋传热特性的预测。  相似文献   

9.
采用CFD软件Fluent对37棒束内的湍流流体进行了分析。利用实验数据对计算结果进行了验证,分析了棒 棒间隙的减小对稠密栅元内局部流动、传热和相干结构的影响。稠密栅元的临界P/D(棒间距/棒直径)约为1.03。随着P/D减小,相干结构和流体交混先增加然后迅速衰减。当通道间隙非常小时,相干结构运动非常弱以至于可将其忽略。其流速、壁面剪应力和壁面温度的波动也非常小,但其参数的空间分布的差异非常明显。  相似文献   

10.
用化学示踪法测量了三角形排列元件组件内各类子通道间单相湍流交混的流率,得到了它们相应的关系式。实验包括:中央子通道四种壁距直径比P/d=1.20,1.33,1.38,1.505;壁区子通道四种壁距直径比δ_w/d=0.0556,0.098,0.172和0.256;子通道的雷诺数范围为(1~4)×10~4。实验结果表明:中央和壁区子通道间单相湍流交混流率是棒间距、子通道当量直径及雷诺素的函数,并随棒间距增加有明显增加。本文得到其关系式。实验结果和其他研究者的结果做了比较,发现比较符合。  相似文献   

11.
国内针对稠密栅元组件内流体的流动和传热特征展了大量的实验研究,但目前仍缺乏对稠密栅元通道内冷却剂流动特性的全面认识.本文对矩形和三角形稠密栅元通道内的空气湍流流动进行了数值研究.结合实验数据,系统地验证了涡粘性和雷诺应力两类湍流模型模拟稠密栅元内流动特征的适用范围.结果表明:SSG雷诺应力模型对流动有较好的模拟,但在棒壁窄缝处的计算结果与实验数据存在较大的差距;在y+<20时,SSG模型对近壁面区域网格的疏密不敏感;在y+较小时,二阶ω模型出现数值震荡.  相似文献   

12.
棒束通道的特殊结构导致其内部流动转捩情况较为复杂,探究其内部流动转捩规律具有重要意义。本文针对棒束通道内的流动转捩特性开展实验与CFD模拟研究,通过实验获得了棒束通道内沿程阻力系数的变化规律;采用不同湍流模型进行了数值模拟。结果表明,SST k-ω模型能较好地反映实验结果。进一步对比了不同雷诺数工况下通道内不同位置的沿程阻力系数与湍流强度,发现对于不同子通道,中心子通道湍流强度与沿程阻力系数高于边角子通道;对于同一子通道,子通道中心处湍流强度与壁面切应力高于子通道边缘处。这一结果说明,受壁面影响,棒束内湍流强度、壁面切应力、阻力特性具有不均匀性,这些空间上的不均匀性相互作用会引起总体上棒束转捩点不明显。  相似文献   

13.
本文详细分析了棒束子通道间湍流交混的微观机理,借助一种湍流模型,从理论上推导出了对任何形式排列棒束子通道皆适用的单相流体湍流交混无因次通用方程:其中, 对几何因子K从理论上进行了定性预测,并根据有关文献[2,3,4,5,9]实验结果得到了几何因子K的经验关系式。以此关系式代入通用方程后能很好地关联文献[9]的全部实验数据,并能将其他研究者[1—7]在各种不同几何参数下得到的实验结果很好地统一于其中。  相似文献   

14.
稠密栅元不同子通道内湍流流动的RANS和URANS模拟   总被引:1,自引:0,他引:1  
本工作采用RANS和非稳态雷诺平均纳维斯托克斯模拟(URANS)方法对稠密栅元内典型子通道——中心通道和壁面通道内的湍流流动进行CFD模拟。研究分析了稠密栅元子通道内的不同周向角度的主流速度、壁面剪应力、湍动能等参数。将模拟计算结果和实验测量结果进行对比,结果表明:RANS模拟在采用各向异性的湍流模型的情况下能较好地模拟P/D较大的稠密栅元通道,但对于P/D较小(P/D<1.1)的稠密栅元通道,CFD结果和实验数据存在较大差距。相比之下,URANS方法可模拟紧密栅元子通道间隙区的大尺度、准周期的流动振动,从而和实验数据拟合良好。推荐采用雷诺应力湍流模型(SSG,ORS)进行RANS模拟,而采用SAS湍流模型进行URANS模拟。  相似文献   

15.
板状燃料组件结构紧凑、冷却剂通道狭窄,其边界层流场特性是决定矩形通道与常规通道内单相流动和传热特性存在差异的重要因素。本文采用粒子图像测速(PIV)技术,对间隙为2 mm和3 mm的矩形通道的速度边界层进行了可视化实验研究,分析了矩形通道边界层内速度分布、雷诺切应力等流场特性,探究了通道间隙对边界层的影响规律。实验结果表明,矩形通道的湍流边界层无量纲速度分布符合Spalding公式,在距离窄边壁面0.2~0.3 mm范围内存在雷诺切应力峰值区,随着雷诺数的增加,速度边界层的黏性底层逐渐减薄,对数律层占比增大,雷诺切应力峰值区向壁面方向靠近。减小矩形通道间隙,将会限制近壁面速度剖面的发展,使得近壁面速度梯度增大,湍流强度减小。  相似文献   

16.
对紧密栅元棒束中心通道和壁面通道内空气的传热流动行为进行了数值研究;结合实验数据对壁面温度、剪应力、流体温度和速度以及湍动能等参数进行了分析.结果表明:随着节径比(PID)的减小,紧密栅元棒束通道内参数的不均匀性会增加,在通道的间隙区会出现壁面温度的峰值.在紧密栅元组件的设计中应该考虑这种间隙区的高温点分布;通道壁面的...  相似文献   

17.
为探究堵流状态下的棒束子通道流场和流量分布特征,本文使用激光粒子测速(PIV)方法对5×5棒束子通道在堵流情况下的流场和子通道流量进行了实验测量,同时使用数值模拟方法进行模拟分析,得到子通道最大堵流比例72%情况下的子通道下游流场以及子通道流量分布数据,结果表明:子通道堵塞会导致对应子通道流速和流量出现明显降低,非堵塞通道的明显加强。对于实验测试的最大72%堵流比例,堵塞物对下游约0.5D范围影响最大,其子通道流速仅有平均流速的约30%,中心堵流子通道流量仅为平均流量的25%左右。使用浸入界面方法模拟了堵流工况,结果表明:该方法能快速有效地模拟子通道堵流情况,堵塞物带来的局部回流是导致堵流件下游0.5D范围内流速过低的主要原因。  相似文献   

18.
液态铅铋合金(LBE)是第四代液态金属核反应堆候选冷却剂,由于LBE热物性具有一定的特殊性,亟待对LBE在燃料组件子通道中的流动与传热过程开展研究。本文对LBE在带绕丝燃料棒组件中湍流流动进行数值模拟与分析,将燃料棒壁面温度的数值模拟结果与响应的实验数据相比较,2者具有较高的吻合度,说明数学模型及数值结果具有较高的可靠性与准确性;使用湍流交混系数β表征LBE在不同子通道间、不同燃料棒间隙宽度与燃料棒直径比(S/D)结构下的湍流交混情况,结果表明,不同子通道间β波动程度具有差异性,β的大小与S/D呈负相关。基于不同S/D与雷诺数的计算结果,拟合出不同子通道间β关联式,为绕丝燃料棒三角形排列方式的燃料组件子通道分析程序开发提供交混模型。   相似文献   

19.
通过理论分析,得到了计算矩形窄缝通道单相层流摩阻系数的公式。对小高宽比矩形窄缝通道内的流动特性进行了实验研究,结果表明:矩形窄缝通道内单相摩阻系数随Re变化的曲线和圆管有相同的趋势,但圆管流动摩阻公式不适用于矩形窄缝通道。矩形通道内摩阻系数与Re和通道截面高宽比有关,通道高宽比越小,摩阻系数越大。实验结果和理论推导结论一致。从截面湿周和切向应力两方面解释了高宽比对矩形窄缝通道内单相水层流摩阻特性的影响机理。  相似文献   

20.
矩形窄缝通道中的泡核沸腾起始点(ONB)预测对反应堆安全设计十分重要。针对通道尺寸为50 mm×3 mm×1000 mm的竖直矩形窄通道,以去离子水为介质,通过监测壁面温度变化确认ONB的位置,研究了热流密度、质量流速、压力、入口过冷度等参数对ONB发生位置和壁面过热度的影响。收集并评价了已有的8个ONB预测模型,结合实验数据分析得到结论:基于池沸腾的ONB预测模型及其改进模型不能很好的适用于矩形窄通道内,尤其是针对质量流速带来的影响。一些针对矩形通道ONB预测开发的模型可以一定程度上反映ONB点壁面过热度随不同参数变化的发展趋势,但由于实验参数范围不够宽,适用范围和预测精度仍受到限制。结合影响矩形窄缝通道ONB发生的主要因素,推导了适用于计算宽谱参数工况下矩形窄通道中ONB点壁面过热度的解析解形式,并利用实验数据进行了拟合,新关系式超过95%的预测结果与实验结果偏差小于±20%。同时新关系式对其他相关公开文献的ONB数据预测仍在较好的误差范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号