首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly designated procedure for high‐pressure freezing of primary culture cells provided excellent ultrastructure of rabbit gastric parietal cells. The isolated parietal cells were cultivated on Matrigel‐coated aluminium plates for conventional subsequential cryoimmobilization by high‐pressure freezing. The ultrastructure of different organelles (Golgi apparatus, mitochondria, multivesicular bodies, etc.) was well preserved compared to conventional chemical fixation. In detail, actin filaments were clearly shown within the microvilli and the subapical cytoplasm. Another striking finding on the cytoskeleton system is the abundance of microtubules among the tubulovesicles. Interestingly, some microtubules appeared to be associating with tubulovesicles. A large number of electron‐dense coated pits and vesicles were observed around the apical membrane vacuoles in cimetidine‐treated resting parietal cells, consistent with an active membrane uptake in the resting state. Immunogold labelling of H+/K+‐ATPase was seen on the tubulovesicular membranes. When stimulated with histamine, the cultured parietal cells undergo morphological transformation, resulting in great expansion of apical membrane vacuoles. Immunogold labelling of H+/K+‐ATPase was present not only on the microvilli of expanded apical plasma membrane vacuoles but also in the electron‐dense coated pits. The present findings provide a clue to vesicular membrane trafficking in cultured gastric parietal cells, and assure the utility of the new procedure for high‐pressure freezing of primary culture cells.  相似文献   

2.
The ultrastructure of primary cultured rat Kupffer cells was studied using transmission X-ray microscopy as well as transmission electron microscopy. X-ray microscopical images of intact, hydrated Kupffer cells demonstrated structures such as cell nucleus separated by a nuclear membrane and filaments concentrated in the perinuclear area. Within the cytoplasm, a number of vacuoles were visible; some of these were crescent-shaped vacuoles that were half X-ray lucent, half X-ray dense; others were uniformly dense. The number of crescent-shaped vacuoles was predominant. After phagocytosis of haematite particles, enlarged vacuoles containing the ingested material were visible within the cytoplasm of Kupffer cells while crescent-shaped vacuoles were no longer detectable. Densitometric analysis of the two types of vacuole revealed that the X-ray absorption of the uniform vacuole was approximately half that of the dense part of the crescent-shaped vacuoles. This observation led to speculation on the existence of only one type of vacuole in the cytoplasm of Kupffer cells. The different morphological aspects — crescent-shaped versus uniform vacuoles — might be due to different three-dimensional orientation with respect to the image plane. Using transmission electron microscopy, the morphology of vacuoles differed more widely in diameter, density and shape. Two main types of vacuole were identified: electron-lucent and electron-dense. Based on the observation of only one type of vacuole by transmission X-ray microscopy, the different morphological aspects of vacuoles obtained by transmission electron microscopy could be explained by imaging several different sections of a crescent-shaped vacuole. From the present data it can be concluded that transmission X-ray microscopy is a versatile technique that reveals the ultrastructure of intact, unsectioned biological specimens in their aqueous environment, thereby allowing a more comprehensive interpretation of data obtained by transmission electron microscopy.  相似文献   

3.
The process of natural leaf senescence of Cinnamomum camphora (C. camphora)—a commercial tree in Asia, was investigated, focusing on changes in cellular ultrastructure, epicuticular wax, and stoma. The changes to mesophyll cells in a senescing leaf predominantly include degradation of the following cellular components: cytoplasm, the central vacuole, small vacuoles, and vesicles with a diameter smaller than 400 nm, which are involved in the degradation of chloroplasts. The sequence of change in epicuticular wax during leaf senescence was different from those in herbaceous plants by atomic force microscope and scanning electron microscopic analysis. Comparing with maturation leaves, senescing leaves develop a wider aperture in their stoma, which would delay the leaf senescence of C. camphora. SCANNING 35:336‐343, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
In Paramecium primaurelia the uptake and intracellular flow of cholesteryl ester was studied by fluorescence confocal laser scanning optical microscopy and by the fluorescent analogue cholesteryl‐BODIPY® FL C12 (BODIPY‐CE). The BODIPY FL fluorophore has the characteristic of emitting green fluorescence, which is red‐shifted as the probe concentrates. In cells incubated with 25 µm BODIPY‐CE for 30 s, fluorescence is found in vesicles located around the cytopharynx in the posterior half of the cell. Successively, the lipid is internalized by food vacuoles, the fluorescent vesicles are distributed throughout the cell and the intracellular membranes are labelled. The food vacuole number is maximum after 10–15 min of continuous labelling, then it decreases until no food vacuoles are found in 30‐min fed cells. BODIPY‐CE accumulates in red‐labelled cytoplasmic droplets located in the anterior half of the cell. When food vacuole formation is inhibited by trifluoperazine, fluorescence is found on cellular membranes and in small green‐labelled vesicles at the apical pole. The inhibition of clathrin‐mediated endocytosis does not interfere in P. primaurelia with BODIPY‐CE intracellular flow: intracellular membranes and storage droplets in the cell anterior part are dyed. Conversely, the use of sterol‐binding drugs prevents the lipid accumulation in droplets, stopping the lipid within the cytoplasmic membranes. Furthermore, the cells treated with monensin and cytochalasin B show a labelling of the cellular membranes and lipid droplets, whereas NH4Cl reduces the lipid storage. Low temperature (4 °C) does not prevent the internalization of BODIPY‐CE that, however, is localized at the cytoplasmic membrane level and does not accumulate in storage droplets. In addition, BODIPY‐CE inhibits phagocytosis, as evidenced by comparing the kinetics of food vacuole formation of control cells, only fed with latex particles, with that of cells fed with latex particles and BODIPY‐CE. In conclusion, this study points out that in P. primaurelia the cholesteryl ester enters the cell via food vacuoles and through the plasma membrane and, inside the cell, it alters cell functions.  相似文献   

5.
The plant Golgi apparatus (sensu lato: Golgi stack + Trans Golgi Network, TGN) is a highly polar and mobile key organelle lying at the junction of the secretory and endocytic pathways. Unlike its counterpart in animal cells it does not disassemble during mitosis. It modifies glycoproteins sent to it from the endoplasmic reticulum (ER), it recycles ER resident proteins, it sorts proteins destined for the vacuole from secretory proteins, it receives proteins internalised from the plasma membrane and either recycles them to the plasma membrane or retargets them to the vacuole for degradation. In functional terms the Golgi apparatus can be likened to a car factory, with incoming (COPII traffic) and returning (COPI traffic) railway lines at the entry gate, and a distribution centre (the TGN) at the exit gate of the assembly hall. In the assembly hall we have a conveyor belt system where the incoming car parts are initially assembled (in the cis-area) then gradually modified into different models (processing of secretory cargo) as the cars pass along the production line (cisternal maturation). After being released the trans-area, the cars (secretory cargos) are moved out of the assembly hall and passed on to the distribution centre (TGN), where the various models are placed onto different trains (cargo sorting into carrier vesicles) for transport to the car dealers. Cars with motor problems are returned to the factory for repairs (endocytosis to the TGN). This simple analogy also incorporates features of quality control at the COPII entry gate with defective parts being returned to the manufacturing center (the ER) via the COPI trains (vesicles). In recent years, numerous studies have contributed to our knowledge on Golgi function and structure in both animals, yeast and plants. This review, rather than giving a balanced account of the structure as well as of the function of the Golgi apparatus has purposely a marked slant towards plant Golgi ultrastructure integrating findings from the mammalian/animal field.  相似文献   

6.
Most of the molecular and experimental studies on the floor plate (FP) have been performed on the FP region extending along the spinal cord. However, little is known about the hindbrain FP. The FP undergoes regional and temporal changes throughout development, but information with respect to the ultrastructural correlate of such changes is missing. The present investigation was focused on the ultrastructural developmental changes occurring in the FP of the rat hindbrain. The FP cells of the hindbrain secrete a material reacting with antibodies against the secretory glycoproteins of the subcommissural organ (AFRU). This antibody was used to perform an ultrastructural immunocytochemical analysis of the rat FP. From E-12 on, there is a progressive increase in the development of the rough endoplasmic reticulum (RER), so that by E-18, it has reached a high degree of hypertrophy. A unique feature of the hindbrain FP cells is the presence of tubular formations and 140-nm vesicles that appear to originate from RER cisternae. The labelling of these two structures with AFRU and Concanavalin A strongly suggests that they are pre-Golgi compartments containing secretory material. Since these structures are present in the basal process and in the apical cell pole of the FP cells, the possibility that they release their content at these sites, is discussed. It is proposed that a secretory mechanism bypassing the Golgi apparatus (constitutive secretion?) operates in the FP cells. The presence of apoptotic cells within the FP of E-20 embryos and newborns suggests that death, and not re-differentiation, is the fate of the FP cells.  相似文献   

7.
Paneth cells in the following species were observed under an electron microscope: human, rhesus monkey, hare, guinea pig, rat, nude rat, mouse, golden hamster, and insect feeder bat. Secretory granules containing homogeneous electron-dense materials were observed in the Paneth cells of humans, monkeys, hares, guinea pigs, and bats; mouse Paneth-cell granules were bipartite (central core and peripheral halo), and the Paneth cells in rats and golden hamsters had secretory granules showing various electron densities. In humans, monkeys, and bats, immature granules near the Golgi apparatus sometimes showed bipartite substructure. The number and size of secretory granules were also diverse among various animal species. Some lysosome-like bodies were commonly observed in peri- or supranuclear regions, though the size and shape of the bodies differed from cell to cell. In apical cytoplasm, small clear vesicles (100–200 nm diameter) were more-or-less observed in all species examined, and it was especially note that rat Paneth cells contained many clear vesicles. Small dense-cored vesicles (150–200 nm diameter) were rare. It is unlikely that the various ultrastructural features of Paneth cells correlate with the phylogenetical classification.  相似文献   

8.
Dehydroergosterol is a natural yeast sterol which has recently been employed for direct observation of intracellular sterol transport by UV microscopy. Here, methods are described for improved visualization and quantification of dehydroergosterol in the membranes of polarized HepG2 cells. Using a new online assay, it is shown that dehydroergosterol derived from a cyclodextrin complex inserted into the plasma membrane with a half time of t1/2 ∼ 34 s. Based on a detailed bleaching analysis of dehydroergosterol, slightly different bleaching rates for dehydroergosterol in the basolateral and canalicular membrane were found, indicating different fluorophore environments. Bleaching correction in concert with 3D imaging allows for detection of dehydroergosterol enrichment in microvilli of the canalicular membrane forming the biliary canaliculus. Evidence is provided that some dehydroergosterol accumulating in a subapical compartment or apical recycling compartment can rapidly (t1/2 ∼ 2 min) exchange in vesicles towards the biliary canaliculus while the majority of dehydroergosterol does not redistribute from this compartment. The rapidly exchanging pool resembles only a small portion of the total subapical compartment or apical recycling compartment-associated dehydroergosterol (about 15–30%). Kinetic modelling supports the theory that the subapical compartment or apical recycling compartment to biliary canaliculus transport pathway for sterol is unidirectional. This pathway might be important for rapid biliary transport of free sterol produced by hydrolysis of cholesteryl esters derived from high density lipoprotein.  相似文献   

9.
The ultrastructure of the intermediate segment (IS), distal tubule and collecting tubule (CT) of the south american toad Bufo arenarum, was studied by light and transmission electron microscopy. The IS is composed of cubical ciliated cells which propel the urine along the renal tubule. The distal tubule is divided into two portions: the early distal tubule (EDT) and the late distal tubule (LDT). The EDT is characterized by only one type of cells with well developed basolateral interdigitations and numerous elongated mitochondria, which are oriented normal to the basal surface. The “macula densa - like” is a specialized zone of the EDT in contact with the vascular pole, where cells are more tightly packed than in the rest of the tubule. The LDT shows two types of cells called dark and light cells according to the appearance of their cytoplasm. Dark cells have microplicae and few but long microvilli at their luminal surface, and abundant mitochondria in their cytoplasm. Light cells show basal and lateral infoldings and few mitochondria. The CT, which is composed of dark and light cells, exhibits an enlarged lumen with an undulated surface and dilated spaces between neighbouring cells.
This work is a contribution to the knowledge of the kidney of B. arenarum; frequently used as an experimental model for physiological and biochemical studies.  相似文献   

10.
The testicular excurrent duct system undergoes several physiological and morphological changes during the reproductive stage or breeding season in mammals, birds, and reptiles. Studies on normal age-related histomorphological changes in the excurrent duct system of Japanese quails (Coturnix japonica) remain unreported, despite the extensive use of this bird as an avian model in research studies. The current study investigated the histological, ultrastructural, and histometric changes in the testicular excurrent duct system of the Japanese quail during three reproductive stages, namely prepubertal, pubertal, and adult. Simple squamous to low cuboidal cells formed the epithelia of the rete testis in prepubertal and pubertal birds, while in adult birds the lining was low cuboidal to cuboidal. In pubertal and adult birds, the nonciliated Type I epithelial cells of the proximal efferent duct displayed a subapical endocytotic apparatus comprising coated pits, coated apical tubules, and endosomes. There was a significant increase (p ≤ .001) in epithelial heights of all ducts of the excurrent duct system in the mature, sexually active, adult birds when compared to the other age groups. The luminal and tubular diameters, and the cross-sectional areas of efferent ducts and the epididymal duct unit increased significantly (p ≤ .001) with age. It is concluded that the morphology and morphometry of the excurrent ducts of the testis of the Japanese quail change as birds mature.  相似文献   

11.
12.
The morphology and ultrastructure of the rectum in Poecilimon cervus Karaba?, 1950 (Orthoptera, Tettigoniidae) were analyzed by light microscope, scanning (SEM) and transmission electron microscopes (TEM). The rectum is the final part of the digestive tract that plays an important role in water reabsorption in insects and so provides osmoregulation. In the transverse sections, six rectal pads and columnar epithelium can be distinguished. The cuticular intima lines the lumen at the apical side of the epithelium. In the cytoplasm, there are numerous mitochondria, some endocytic vesicles, secreting vesicles whose sizes differ according to the area in the cell, and a nucleus with globular in shape. With this study, we aimed to demonstrate the ultrastructure of the rectum of P. cervus and differences or similarities of with other species.  相似文献   

13.
The fine structure of human oogonia and growing oocytes has been reviewed in fetal and adult ovaries. Preovulatory maturation and the ultrastructure of stimulated oocytes from the germinal vesicle (GV) stage to metaphase II (MII) stage are also documented. Oogonia have large nuclei, scanty cytoplasm with complex mitochondria. During folliculogenesis, follicle cell processes establish desmosomes and deep gap junctions at the surface of growing oocytes, which are retracted during the final stages of maturation. The zona pellucida is secreted in secondary follicles. Growing oocytes have mitochondria, Golgi, rough endoplasmic reticulum (RER), ribosomes, lysosomes, and lipofuscin bodies, often associated with Balbiani bodies and have nuclei with reticulated nucleoli. Oocytes from antral follicles show numerous surface microvilli and cortical granules (CGs) separated from the oolemma by a band of microfilaments. The CGs are evidently secreted by Golgi membranes. The GV oocytes have peripheral Golgi complexes associated with a single layer of CGs close to the oolemma. They have many lysosomes, and nuclei with dense compact nucleoli. GV breakdown occurs by disorganization of the nuclear envelope and the oocyte enters a transient metaphase I followed by MII, when it is arrested and ovulated. Maturation of oocytes in vitro follows the same pattern of meiosis seen in preovulatory oocytes. The general organization of the human oocyte conforms to that of most other mammals but has some unique features. The MII oocyte has the basic cellular organelles such as mitochondria, smooth endoplasmic reticulum, microfilaments, and microtubules, while Golgi, RER, lysosomes, multivesicular, residual and lipofuscin bodies are very rare. It neither has yolk nor lipid inclusions. Its surface has few microvilli, and 1-3 layers of CGs, aligned beneath the oolemma. Special reference has been made to the reduction and inactivation of the maternal centrosome during oogenesis. The MII spindle, often oriented perpendicular to the oocyte surface, is barrel-shaped, anastral and lacks centrioles. Osmiophilic centrosomes are not demonstrable in human eggs, since the maternal centrosome is nonfunctional. However, oogonia and growing oocytes have typical centrioles, similar to those of somatic cells. The sperm centrosome activates the egg and organizes the sperm aster and mitotic spindles of the embryo, after fertilization.  相似文献   

14.
In the present work, the authors investigated ultrastructural changes as well as the reproduction behaviour of preselected single CHO-K1 cells exposed to 170 femtosecond laser pulses at different power output levels in comparison with cells outside the illumination volume. The ultrashort laser pulses were provided by an 80 MHz Ti:sapphire laser at 780 nm. The cells were scanned ten times with a scan rate of 1/16 s(-1). Single CHO-K1 cells exposed to low mean power of 2 mW revealed no significant changes in ultrastructure after laser exposure. In some cases, changes of mitochondria with slight disordering of cristae were found. Cytoplasm was filled with vesicles that seemed to be released from Golgi stacks. Cells irradiated with higher powers demonstrated more dramatic changes in ultrastructure. A considerable number of swollen mitochondria in conjunction with loss of cristae was observed. The main event of mitochondrial changes was the formation of electron dense bodies in the mitochondrial matrix. In addition, lumen of endoplasmatic reticulum was enlarged. Highest applied mean laser power of 12.5 mW lead to complete destruction of mitochondria and their transformation to electron dense structures containing membrane material. Compared with cell targets irradiated with 2 mW mean power, the release of vesicles from Golgi stacks seemed to be rather moderate. Cells localised outside the laser beam revealed no ultrastructural changes. Low mean laser power at 2 mW was unable to impair the reproduction behaviour of CHO-K1 cells. At higher laser power output levels, CHO-K1 cells started to delay cell division. At 12.5 mW, no cell division occurred. The obtained results may be helpful in recommending parameters for safe femtosecond laser microscopy of living specimens.  相似文献   

15.
Mineralization patterns in elasmobranch fish   总被引:2,自引:0,他引:2  
This article reviews current findings on the organic matrix and the mineralization patterns in elasmobranchs, including an analysis of the role of the dental epithelial cells and the odontoblasts during odontogenesis. Our electron micrographs demonstrated that tubular vesicles limited by a unit membrane occupied the bulk of the elasmobranch enameloid matrix during the stage of enameloid matrix formation. It is likely that the tubular vesicles originated from the odontoblast processes. Two types of electron-dense fibrils, with cross-striations at intervals of approximately either 17 nm or 55 nm, respectively, were detected in the enameloid matrix. These data suggest that odontoblasts were strongly involved in enameloid matrix formation and in initial enameloid mineralization. Two types of odontoblasts, dark and light cells, were recognized during the stage of dentinogenesis. The light cells contained numerous mitochondria, intermediate filaments, and microtubules that extended their processes into the dentin. The dark cells possessed a well-developed Golgi apparatus and many cisternae in the rough endoplasmic reticulum, which suggests that the dark cells are involved in the formation of dentin. The inner dental epithelial (IDE) cells exhibited a well-developed Golgi apparatus, many mitochondria, cisternae of smooth endoplasmic reticulum, vesicles, vacuoles, and granules during the mineralization and maturation stages. During the stages of mineralization and early maturation, ACPase-positive granules were visible in the IDE cells and ALPase and Ca-ATPase activities were found at the lateral and proximal cell membrane of the IDE cells, suggesting that the IDE cells are involved in the removal of enameloid organic matrix and in the process of mineralization during later stages of enameloid formation. Our data indicate that elasmobranch enameloid is distinct from teleost enameloid, based on its organic content, on the mechanisms of its mineralization, and on the role of IDE cells concerning enameloid formation.  相似文献   

16.
The Golgi apparatus of both higher plant and animal cells sorts and packages macromolecules which are in transit to and from the cell surface and to the lysosome (vacuole). It is also the site of oligosaccharide and polysaccharide synthesis and modification. The underlying similarity of function of plant and animal Golgi is reflected in similar morphological features, such as cisternal stacking. There are, however, several fundamental differences between the Golgi of plant and animal cells, reflecting, in large part, the fact that the extracellular matrices and lysosomal systems differ between these kingdoms. These include (1) the form and replication of the Golgi during cell division; (2) the disposition of the Golgi in the interphase cell; (3) the nature of “anchoring” the Golgi in the cytoplasm; (4) the genesis, extent, and nature of membranes at the trans side of the stack; (5) targeting signals to the lysosome (vacuole); and (6) physiological regulation of secretion events (constitutive vs. regulated secretion). The degree of participation of the Golgi in endocytosis and membrane recycling is becoming clear for animal cells, but has yet to be explored in detail for plant cells.  相似文献   

17.
Mammalian olfactory neurons possess a well-developed system of endocytic vesicles, endosomes, and lysosomes in their dendrites and perikarya. Vomeronasal neurons are similar and also contain much perikaryal agranular endoplasmic reticulum (AER). Olfactory supporting cells contain endocytic vesicles and endosomes associated closely with abundant fenestrated AER, and vesicles and numerous large dense vacuoles are present basally. Vomeronasal supporting cells have little AER, and few dense vacuoles occur in their bases. In olfactory neurons, ultrastructural tracers (0.08% horseradish peroxidase, thorium dioxide, ferritin) are endocytosed by olfactory receptor endings and transported to the cell body, where their movement is halted in lysosomes. Higher concentrations (1%) of horseradish peroxidase penetrate olfactory receptor plasma membranes and intercellular junctions. In olfactory supporting cells, endocytosed tracers pass through endosomes to accumulate in dense basal vacuoles. These observations indicate that olfactory sensory membranes are rapidly cycled and that endocytosed materials are trapped within the epithelium. It is proposed that in the olfactory epithelium, endocytosis presents redundant odorants to the enzymes of the supporting cell AER to prevent their accumulation, whereas in the vomeronasal epithelium the receptor cells carry out this activity.  相似文献   

18.
Hypothalamic regulatory peptides bind to specific receptors on target cells in the pituitary and control secretion. They in turn can be regulated at the pituitary level by steroid and peptide modulators. Affinity cytochemical techniques are important tools for the identification of specific target binding sites for these regulatory peptides. This presentation reviews the work in which potent, biotinylated ligands of gonadotropin releasing hormone (bio-GnRH), corticotropin releasing hormone (bio-CRH), and arginine vasopressin (bio-AVP) were applied to study the target cell responses. Bio-GnRH, bio-CRH, and bio-AVP bind to membrane receptors on specific anterior pituitary cells. Dual labeling for either gonadotropin or adrenocorticotropin (ACTH) antigens further identified the target cells. After 1–3 minutes, the label was in patches or capped on the surface. After 3 minutes, it was internalized in small vesicles and sent to receptosomes and vacuoles in the Golgi complex. Eventually the biotinylated peptides, or a metabolite, was found in the lysosomes (multivesicular bodies) and a subpopulation of secretory granules. The route and rate of uptake was similar to that described for the classical receptor-mediated endocytosis process. In contrast, intermediate lobe corticotropes internalized the bio-CRH in less than 1 minute. The route through the Golgi complex appeared to be bypassed. Instead the labeled peptide was in vesicles, on the membranes of scattered vacuoles, and in multivesicular bodies. Modulation of ligand binding by steroids showed that changes in receptor numbers correlated with changes in the number of cells that bound the ligand. In male rats, dihydrotestosterone reduced the percentage of GnRH-bound cells by 50%. Most of the reduction appeared in cells that stored luteinizing hormone (LH) antigens. In diestrous female rats, estradiol increased the percentage of bio-GnRH-bound cells. However, the steroid decreased the percentage of GnRH-bound cells in cells from proestrous rats. Glucocorticoids decreased the percentage of CRH-bound corticotropes in as little as 10 minutes. Potentiation of secretion by these ligands was correlated with increases in the percentage of ligand-bound cells. AVP pretreatment of corticotropes increased the percentage of cells that bound bio-CRH. It also increased the rate of receptor-mediated endocytosis of CRH and changed the route so that the Golgi complex was bypassed. This effect could be mimicked by activation of its second messengers (calcium and protein kinase C). Similarly, CRH pretreatment increased the percentage of corticotropes that bound AVP. Thyrotropin releasing hormone (TRH) pretreatment also increased the percentage of thyrotropes that bound AVP. Finally, calcium or sodium channel blockers altered CRH binding so that fewer cells were labeled. This binding by CRH was not dependent on extracellular calcium and tests with a calcium channel agonist showed that it was related to activation of calcium channels. To summarize, these affinity cytochemical studies have identified specific target cells in the pituitary for GnRH, CRH, and AVP. They have also identified heterogeneity in the population. They have demonstrated new information about the direct modulatory effects of steroids, ion channels, and neuropeptides on neuropeptide binding by subpopulations of these target cells.  相似文献   

19.
20.
The ultrastructure of the progressive testicular involution with advancing age in men is reviewed. There is no definite age at which testicular involution begins, and the onset and severity of testicular lesions are subjected to pronounced individual variations. Hormone studies also indicate great individual variations, and subtle changes in both the testis and the pituitary develop progressively with age. Testicular size, sperm quality, and numbers of all germ cell types, Sertoli cells, and Ley dig cells decrease with age. The volume occupied by the seminiferous tubules decreases, whereas that occupied by the testicular interstitium remains constant. The most frequent histological pattern of the aging testis is a mosaic of different seminiferous tubule lesions, varying from tubules with complete, although reduced, spermatogenesis, to completely sclerosed tubules. The tubules with complete spermatogenesis may show numerous morphological abnormalities in the germ cells, including multinucleation. Abnormal germ cells degenerate causing Sertoli cell vacuolation. These vacuoles correspond to dilations of the extracellular spaces resulting from the premature exfoliation of germ cells. Degenerating cells that are phagocytosed by the Sertoli cells give rise to an accumulation of lipid droplets in the Sertoli cell cytoplasm. The loss of germ cells begins with the spermatids, but progressively affects the earlier germ cell types, and tubules with maturation arrest at the level of the spermatocytes or spermatogonia are observed. The Sertoli cells show morphological abnormalities such as dedifferentiation, mitochondrial metaplasia, and multinucleation. Germ cell loss is associated with thickening of the tunica propria. When all seminiferous epithelial cells have disappeared, only an intensely collagenized tunica propria with myoid cells remains (sclerosed tubules). The Ley dig cells progressively dedifferentiate with a decrease in the quantity of both smooth endoplasmic reticulum and mitochondria, together with an accumulation of lipid droplets, crystalline inclusions, and residual bodies, and formation of multinucleate cells. The development of tubular involution with age is similar to that observed after exprimental ischemia, suggesting that vascular lesions may play an important role in age-related testicular atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号