首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Short-chain fatty acids (SCFAs) have a range of effects in metabolism and immune regulation. We have observed that delivery of SCFAs to lysosomes has potent immune regulatory effects, possibly as a surrogate signal for the presence of anaerobic organisms. To better understand the pharmacology of lysosomal SCFA donors, we investigated the distribution and metabolism of propionate and butyrate donors. Each analog ( 1 a and 2 a ) can donate three SCFA equivalents via ester hydrolysis through six intermediate metabolites. The compounds are stabilized by low pH, and stability in cells is usually higher than in medium, but is cell-type specific. Butyrate derivatives were found to be more stable than propionates. Tri-esters were more stable than di- or mono-esters. The donors were surprisingly stable in vivo, and hydrolysis of each position was organ specific. Jejunum and liver caused rapid loss of 4’’ esters. The gut metabolite pattern by i. v. differed from that of p.o. application, suggesting luminal and apical enzyme effects in the gut epithelium. Central organs could de-esterify the 11-position. Levels in lung relative to other organs were higher by p.o. than via i. v., suggesting that delivery route can influence the observed pharmacology and that gut metabolites distribute differently. The donors were largely eliminated by 24 h, following near linear decline in organs. The observed levels and distribution were found to be consistent with pharmacodynamic effects, particularly in the gut.  相似文献   

3.
The gut microbiota encodes a broad range of enzymes capable of synthetizing various metabolites, some of which are still uncharacterized. One well-known class of microbiota-derived metabolites are the short-chain fatty acids (SCFAs) such as acetate, propionate, butyrate and valerate. SCFAs have long been considered a mere waste product of bacterial metabolism. Novel results have challenged this long-held dogma, revealing a central role for microbe-derived SCFAs in gut microbiota-host interaction. SCFAs are bacterial signaling molecules that act directly on host T lymphocytes by reprogramming their metabolic activity and epigenetic status. They have an essential biological role in promoting differentiation of (intestinal) regulatory T cells and in production of the anti-inflammatory cytokine interleukin-10 (IL-10). These small molecules can also reach the circulation and modulate immune cell function in remote tissues. In experimental models of autoimmune and inflammatory diseases, such as inflammatory bowel disease, multiple sclerosis or diabetes, a strong therapeutic potential of SCFAs through the modulation of effector T cell function was observed. In this review, we discuss current research activities toward understanding a relevance of microbial SCFA for treating autoimmune and inflammatory pathologies from in vitro to human studies.  相似文献   

4.
Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal high-fructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline- and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin–angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure.  相似文献   

5.
Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring’s gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.  相似文献   

6.
Our aim was to evaluate the influence of the Gln27Glu polymorphism of the β2‐adrenergic receptor (ADRβ2) gene, fat intake and physical activity on the energy expenditure (EE) and nutritional status of obese women. Sixty obese women (30–46 years) participated in the study and were assigned to three groups depending on the genotypes: Gln27Gln, Gln27Glu and Glu27Glu. At baseline and after nutritional intervention, the anthropometric and body composition (bioelectrical impedance), dietary, EE (indirect calorimetry) and biochemical variables were measured. All women received a high‐fat test meal to determine the postprandial EE (short‐term) and an energy‐restricted diet for 10 weeks (long term). The frequencies of Gln27Gln, Gln27Glu and Glu27Glu were 36.67, 40.0 and 23.33 %, respectively. Anthropometric and biochemical variables and EE did not differ between groups, although women who had no polymorphism demonstrated decreased carbohydrate oxidation. On the other hand, the Glu27Glu genotype showed a positive relation with EE in physical activity and fat oxidation. The environmental factors and Gln27Glu polymorphism did not influence the nutritional status and EE of obese women, but physical activity in obese women with the polymorphism in the ADRβ2 gene can promote fat oxidation. The results suggest that encouraging the practice of physical exercise is important considering the high frequency of this polymorphism in obese subjects.  相似文献   

7.
To evaluate serum vitamin levels and its association with obstetrics and perinatal results in HIV infected pregnant women. Observational and prospective study carried out at Division of Infectious-Contagious Diseases in Gynecology and Obstetrics of the University Hospital, Medicine School of Ribeir?o Preto, University of S?o Paulo, involving 57 pregnant women divided into 3 groups: Group 1, with 12 normal pregnant women, it was the control group; Group 2, with 20 HIV infected pregnant women, using ZDV; and Group 3, with 25 HIV infected pregnant women, using therapy I contend ZDV, 3TC and nelfinavir. The evaluation of the serum vitamin level was obtained three times during pregnancy at equidistant time intervals and in the immediate period after birth. We also evaluated the levels of this vitamin and the hemoglobin in the blood of the umbilical cord. We obtained maternal and newborn infant anthropometric data, as well as the counting of lymphocyte TCD4 and viral load of the HIV during the pregnancy. Reduced serum vitamin levels were observed in the Group 1(25%), the Group 2(29,4%) and the Group 3(28,6%). Association was not observed between serum levels of maternal retinol and the duration of the gestation in groups 2 and 3. In groups 1 and 3, an association was observed between the maternal concentration of retinol and the newborn hemoglobin (p=0.05). In distinct way to the Control group, association was not observed between the retinol levels of the umbilical cord and the weight of the newborn in gestations of Group 2, while a trend to this association was observed in gestations of Group 3 (p=0.06). We observed high prevalence of hipovitaminosis A in the population of this study, regardless of antiretroviral scheme used.  相似文献   

8.
The time course of changes in lipoprotein metabolism of obese offspring of mildly diabetic rats was studied with respect to serum lipoprotein composition as well as LCAT and tissue lipoprotein lipase (LPL) activities. Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin on day 5 of gestation. Control pregnant rats were injected with citrate buffer. At birth, obese pups had higher serum glucose, insulin, and lipoprotein (VLDL, LDL-HDL1, HDL2–3) levels than control pups. After 1 mon of life, all of these parameters in obese rats became similar to those of controls. However, LCAT, adipose tissue LPL, and hepatic triacylglycerol lipase activities were high. At 2 mon of age, VLDL-TAG levels were higher in obese females than in controls. By the age of 3 mon, obese offspring had developed insulin resistance with hyperglycemia, hyperinsulinemia, and higher serum lipoprotein concentrations. Indeed, qualitative abnormalities of lipoproteins were seen and were typical of obese and diabetic human beings. Fetal hyperinsulinemia should be considered as a risk factor for later metabolic diseases, including dyslipoproteinemia.  相似文献   

9.
Ruminal disappearance of linoleic and linolenic acid has been studied extensively. Less is known of the metabolism of docosahexaenoic acid (22:6n-3). The aim of this study was to identify factors which affect the disappearance of 22:6n-3 during in vitro batch incubations using rumen fluid from sheep. In experiment 1, the effect of the rumen fluid/buffer ratio (0.2 or 0.4), substrate (cellulose or cellulose/glucose), time of 22:6n-3 addition (0.08 mg/mL after 0 or 6 h of incubation) and incubation time (24 or 48 h) was evaluated. A mixture design was used in experiment 2 to evaluate the effect of carbohydrate type (cellulose, glucose, cellobiose and starch) on 22:6n-3 disappearance (0.08 mg/mL). In experiment 3, several concentrations of 22:6n-3 (0.05–0.30 mg/mL) were evaluated with different substrate mixtures (combinations of cellobiose, starch and cellulose). In a final experiment, the effect of the rumen fluid/buffer ratio (0.20, 0.35 and 0.50) and substrate (glucose, cellobiose and starch) was evaluated. In this experiment, 22:6n-3 was added as a proportion of rumen fluid ranging from 0.1 to 0.4 mg/mL rumen fluid, contrary to former experiments where concentrations were relative to culture medium. Low levels of 22:6n-3 (0.05 mg/mL) allowed extensive metabolism whereas increasing amounts of 22:6n-3 hampered its disappearance. A greater proportion of rumen fluid resulted in increased disappearance of 22:6n-3. The effect of carbohydrate type was small compared with the former two factors. These results suggest that in vitro metabolism of 22:6n-3 is mostly dictated by the conditions at the start of the incubation, i.e., inoculum, probably reflecting the density of bacteria able to metabolize 22:6n-3.  相似文献   

10.
Obesity is a major health problem. Compelling evidence supports the beneficial effects of probiotics on obesity. However, the anti-obesity effect of probiotics remains unknown. In this study, we investigated the anti-obesity effects and potential mechanisms of Lactiplantibacillus plantarum ATG-K2 using 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese mice. 3T3-L1 cells were incubated to determine the effect of lipid accumulation with lysate of L. plantarum ATG-K2. Mice were fed a normal fat diet or HFD with L. plantarum ATG-K2 and Orlistat for 8 weeks. L. plantarum ATG-K2 inhibited lipid accumulation in 3T3-L1 adipocytes, and reduced body weight gain, WAT weight, and adipocyte size in HFD-induced obese mice, concurrently with the downregulation of PPARγ, SREBP1c, and FAS and upregulation of PPARα, CTP1, UCP1, Prdm16, and ND5. Moreover, L. plantarum ATG-K2 decreased TG, T-CHO, leptin, and TNF-α levels in the serum, with corresponding gene expression levels in the intestine. L. plantarum ATG-K2 modulated the gut microbiome by increasing the abundance of the Lactobacillaceae family, which increased SCFA levels and branched SCFAs in the feces. L. plantarum ATG-K2 exhibited an anti-obesity effect and anti-hyperlipidemic effect in 3T3-L1 adipocytes and HFD-induced obese mice by alleviating the inflammatory response and regulating lipid metabolism, which may be influenced by modulation of the gut microbiome and its metabolites. Therefore, L. plantarum ATG-K2 can be a preventive and therapeutic agent for obesity.  相似文献   

11.

Background

This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss.

Methods

One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg?m-2, 44.8 ± 4.2% fat) were randomized to either no diet + no exercise control group (CON) a no diet + exercise control (ND), or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP]) in addition to beginning a 3x?week-1 supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate.

Results

All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass) and body composition via DXA (fat mass and % fat) changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength) occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non-diet/non-exercise groups.

Conclusions

Overall and over the entire test period, all diet groups which restricted their caloric intake and exercised experienced similar responses to each other. Regular exercise and modest caloric restriction successfully promoted anthropometric and body composition improvements along with various markers of muscular fitness. Significant increases in relative energy expenditure and reductions in circulating leptin were found in response to all exercise and diet groups. Macronutrient distribution may impact circulating levels of insulin and overall ability to improve strength levels in obese women who follow regular exercise.  相似文献   

12.
The effects of dietary supplementation with coconut oil on the biochemical and anthropometric profiles of women presenting waist circumferences (WC) >88 cm (abdominal obesity) were investigated. The randomised, double-blind, clinical trial involved 40 women aged 20–40 years. Groups received daily dietary supplements comprising 30 mL of either soy bean oil (group S; n = 20) or coconut oil (group C; n = 20) over a 12-week period, during which all subjects were instructed to follow a balanced hypocaloric diet and to walk for 50 min per day. Data were collected 1 week before (T1) and 1 week after (T2) dietary intervention. Energy intake and amount of carbohydrate ingested by both groups diminished over the trial, whereas the consumption of protein and fibre increased and lipid ingestion remained unchanged. At T1 there were no differences in biochemical or anthropometric characteristics between the groups, whereas at T2 group C presented a higher level of HDL (48.7 ± 2.4 vs. 45.00 ± 5.6; P = 0.01) and a lower LDL:HDL ratio (2.41 ± 0.8 vs. 3.1 ± 0.8; P = 0.04). Reductions in BMI were observed in both groups at T2 (P < 0.05), but only group C exhibited a reduction in WC (P = 0.005). Group S presented an increase (P < 0.05) in total cholesterol, LDL and LDL:HDL ratio, whilst HDL diminished (P = 0.03). Such alterations were not observed in group C. It appears that dietetic supplementation with coconut oil does not cause dyslipidemia and seems to promote a reduction in abdominal obesity.  相似文献   

13.
目的探讨孕妇IgG类红细胞血型不规则抗体对早期诊断Non-ABO-HDN的意义。方法筛查4200份孕妇血清中红细胞血型不规则抗体,阳性者检测抗体特异性、免疫球蛋白类型及效价;对检测出IgG类不规则抗体者,分娩时取脐血(或新生儿血)检测血清(浆)游离抗体,并进行红细胞直接抗球蛋白试验和红细胞放散试验,以诊断其是否发生HDN。结果4200份孕妇血清中检出红细胞血型不规则抗体44份(阳性率为1.05%),其中20份孕妇血清的抗体为IgG类或IgG及IgM混合抗体,脐血(或新生儿血)检测结果,10名婴儿发生了Non-ABO-HDN,1名发生了宫内死胎。致病的抗体特异性分布为:抗-D2例、抗-c1例、抗-E2例、抗-cE1例、抗-M4例(其中1例并有抗-A)。结论孕妇体内IgG类的Rh血型系统的抗体及抗-M易引起non-ABO-HDN,检测孕妇IgG类红细胞血型不规则抗体对早期诊断Non-ABO-HDN、鉴别引发HDN的抗体型别、评估HDN的严重程度及制定治疗方案均具有重要意义。  相似文献   

14.
Magnesium levels in serum, as well as 24-hr urine and 2-hr post-fasting urine levels, were studied in 107 pregnant women, who were later separated into two groups. One group was advised to follow their usual intake, and the other, to supplement the diet with 750 cc of milk. The control group (30 healthy non-pregnant women) underwent the same protocol. Magnesium intake in pregnant women was much lower than that recommended for gestation. In both groups of pregnant women, serum magnesium levels were lower than those of the controls, in the second and third trimester of pregnancy. Urinary magnesium in 24-hr urine was higher in each trimester of pregnancy than the controls. Hypomagnesemia and hypermagnesuria not influenced by milk intake was observed.  相似文献   

15.
Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin–angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.  相似文献   

16.
The Liver-Expressed Antimicrobial Peptide 2 (LEAP-2) has emerged as an endogenous GHS-R antagonist and blunts the orexigenic action of ghrelin. This study aimed to determine the Ghrelin/LEAP-2 ratio in humans and rats during pregnancy. In humans, we conducted a nested case-control study within an observational prospective cohort. Healthy and mild preeclamptic pregnant women were studied at each trimester of gestation and three months postpartum. In addition, a group of non-pregnant women was studied into the follicular and luteal phases of the menstrual cycle. Furthermore, Ghrelin/LEAP-2 ratio was investigated in non-pregnant rats and at different periods of rat pregnancy. Human and rat serum ghrelin and LEAP-2 levels were determined using the commercially available ELISA kits. The Ghrelin/LEAP-2 ratio peak around the second trimester of gestation in healthy pregnant women (p < 0.05). Additionally, there were no statistically significant differences in Ghrelin/LEAP-2 ratio between healthy and preeclamptic pregnant women at each trimester of gestation (p > 0.05). The Ghrelin/LEAP-2 ratio in pregnant rat reached the peak around mid-gestation with a similar pattern to the human pregnancy. LEAP-2 was visualized by immunohistochemistry in human term placenta and rat placentas on days 12, 16 and 21 of pregnancy. In conclusion, this study provides the first evidence of a Ghrelin/LEAP-2 ratio peak around the half-way point of pregnancy onwards during human and rat pregnancy, and it might be associated with increased rates of weight gain during pregnancy. Thus, this study suggests that LEAP-2 and Ghrelin/LEAP-2 ratio might play an important role in maternal physiology adaptation of weight gain during pregnancy.  相似文献   

17.
Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.  相似文献   

18.
19.
In a cohort of women with previous gestational diabetes mellitus (GDM), we aimed to ascertain whether women with abnormal glucose tolerance 1‐year postdelivery had a more atherogenic lipid profile during and after pregnancy than those with normal glucose tolerance. A prospective cohort study with longitudinal design between January 2004 and March 2016 was conducted. Three hundred and six (56.8%) of 537 women diagnosed with GDM during the studied period attended a control visit during the first year after delivery. Of these, 112 (36.6%) had prediabetes and 16 (5.2%) had type 2 diabetes mellitus. No significant differences during pregnancy were found in total, low‐density lipoprotein, high‐density lipoprotein (HDL) cholesterol, and triacylglycerol (TAG) concentrations among the three groups. Only HDL cholesterol and TAG levels differed significantly among groups at 2 and 12 months after delivery. Logistic regression analysis revealed pregnancy HDL and glucose metabolism status to be associated with the HDL cholesterol concentration 1‐year postdelivery. Furthermore, the only independent factor associated with TAG levels 1 year after delivery was the gestational TAG concentration. In summary, an overweight multiethnic group of women with prior GDM presented a high incidence of postpartum dysglycemia (41.8%). HDL‐cholesterol and TAG levels, both components of the metabolic syndrome, differed significantly among the three study groups in the glucose‐metabolism status at 2 and 12 months after delivery. Women with previous GDM must be followed up in the postpartum period for early detection and management of lipid and glucose disorders.  相似文献   

20.
The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号