首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.  相似文献   

2.
Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD), a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD) polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T), fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C), conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.  相似文献   

3.
Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.  相似文献   

4.
The use of statins as the preferred lipid-lowering therapy has clearly demonstrated its efficacy in the treatment of hypercholesterolemia, reducing also the risk of coronary events and cardiovascular disease mortality. In this study, we assessed single nucleotide polymorphisms (SNPs) in the SLCO1B1 gene and their effect on atorvastatin response. We included 129 Chilean hypercholesterolemic patients undergoing 10 mg/day of atorvastatin therapy during 4 weeks. Lipid profile was determined before and after drug administration. Genotyping of SLCO1B1 rs4149056 (c.521T>C) SNP was performed with allele-specific polymerase chain reaction, whilst polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping the SLCO1B1 rs2306283 (c.388A>G) variant. After statin therapy, concentrations of TC, LDL-C and TG had a decrease from baseline (p < 0.05). Also, HDL-C levels increased (p < 0.05). Minor allele frequencies for the rs2306283 and rs4149056 variants were 0.547 and 0.136, respectively. LDL-C response to atorvastatin was not associated with the SLCO1B1 rs4149056 nor the rs2306283 polymorphisms (p > 0.05). However, the latter SNP was associated with HDL-C variability after atorvastatin medication (p = 0.02). This study indicates that LDL-C reduction following atorvastatin therapy is not influenced by the SNPs evaluated. In addition, the polymorphism rs2306283 at the SLCO1B1 gene determines greater HDL-C concentrations in response to atorvastatin medication in Chilean hypercholesterolemic subjects.  相似文献   

5.
Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.  相似文献   

6.
Growth hormone (GH) has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide polymorphisms (SNPs) were identified in GH gene, with two mutations in intron 4 (g.4940A>C, g.4948A>T), one mutation in exon 5 (g.5045T>C) and one in intron 5 (g.5234T>G). Notably, three of them were significantly associated with growth performance, particularly for g.4940A>C which was highly correlated with all the four growth traits. In conclusion, our results demonstrated that these SNPs in GH gene could influence growth performance of S.chuatsi and could be used for marker-assisted selection (MAS) in this species.  相似文献   

7.
In mammals, leptin has been demonstrated to perform important roles in many physiological activities and to influence development, growth, metabolism and reproduction. However, in fish, its function is still unclear. Duplicate leptin genes, leptin-a and leptin-b, have been identified in the orange-spotted grouper. In the present study, the polymorphisms in the leptin-b gene of the orange-spotted grouper were detected, and the relation between these polymorphisms and 12 growth traits were analyzed. Six polymorphisms (including 3 single nucleotide polymorphisms (c.14G>A, c.93A>G, c.149G>A) in exon 1, 2 SNPs (c.181A>G, c.193G>A) in intron 1, and 1 SNP (c.360C>T) in exon 2) were identified and genotyped from 200 different individuals. The results revealed that the SNP c.149G>A was significantly associated with growth traits, that the heterozygous mutation genotype GA having negative effects on growth traits. However, the other five SNPs (c.14G>A, c.93A>G, c.181A>G, c.193G>A, c.360C>T) did not show significant associations with all the growth traits. Compared with our findings in leptin-a gene, the results suggested that the leptin-a hormone has more important physiological effects in fish bodies than the leptin-b type. Moreover, leptin genes were supposed to be one class of major candidate genes of regulating growth traits in the orange-spotted grouper.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) plays an important role in the growth and development of vertebrates. To study polymorphisms of IGF-I, we screened a total of 4555 bp of genomic sequences in four exons and partial introns for the discovery of single nucleotide polymorphism (SNP) in common carp (Cyprinus carpio). Three SNPs (g.3759T>G, g.7627T>A and g.7722T>C) in intron 2 and a nonsynonymous SNP (g.7892C>T) in exon 3 were identified in a pilot population including random parents and their progenies. 289 progenies were further genotyped for studying possible associations between genotypes or combined genotypes and growth traits. The results showed that the locus g.7627T>A was significantly associated with body weight and body length, and fish with genotype AA had a mean body weight 5.9% higher than those with genotype TT. No significant associations were observed between genotypes of other loci and growth traits. However, when both g.7627T>A and g.7722T>C were considered, the combined genotype TT/TT was extremely associated with the lowest values of body length and body weight and the highest K value in comparison with other diplotypes (p < 0.01). These results suggest that genotype AA at g.7627T>A and its combined genotypes with alleles from another locus have positive effects on growth traits, which would be a candidate molecular marker for further studies in marker-assisted selection in common carp.  相似文献   

9.
Gastric cancer (GC) is the fifth leading cause of cancer deaths in the world, with variations across geographical regions and ethnicities. Emerging evidence indicates that miRNA expression is dysregulated in GC and its polymorphisms may contribute to these variations, which has yet to be explored in Latin American populations. In a case-control study of 310 GC patients and 311 healthy donors from Chile, we assessed the association of 279 polymorphisms in 242 miRNA genes. Two novel polymorphisms were found to be associated with GC: rs4822739:C>G (miR-548j) and rs701213:T>C (miR-4427). Additionally, rs1553867776:T>TCCCCA (miR-4274) and rs12416605:C>T (miR-938) were associated with intestinal-type GC, and rs4822739:C>G (miR-548j) and rs1439619:T>G (miR-3175) with TNM I-II stage. The polymorphisms rs6149511:T> TGAAGGGCTCCA (miR-6891), rs404337:G>A (miR-8084), and rs1439619:T>G (miR-3175) were identified among H.pylori-infected GC patients and rs7500280:T>C (miR-4719) and rs1439619:T>G (miR-3175) were found among H. pylori cagPAI+ infected GC cases. Prediction analysis suggests that seven polymorphisms could alter the secondary structure of the miRNA, and the other one is located in the seed region of miR-938. Targets of miRNAs are enriched in GC pathways, suggesting a possible biological effect. In this study, we identified seven novel associations and replicated one previously described in Caucasian population. These findings contribute to the understanding of miRNA genetic polymorphisms in the GC pathogenesis.  相似文献   

10.
11.
12.
13.
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder caused by the deposition of amyloid beta-peptide (Aβ) aggregates. Aβ aggregates lead to vessel rupture and intracerebral hemorrhages, detected by magnetic resonance imaging (MRI). Presenile CAA is usually genetically determined by mutations in the amyloid precursor protein (APP) gene. However, mutations after codon 200 in the presenilin 1 (PSEN1) gene have been reported to facilitate CAA onset. Here, we analyzed the genetic bases in a patient of 55 years old affected by CAA and cognitive decline. DNA was isolated and genetic analysis was performed by Next-Generation Sequencing (NGS). RNA was extracted and retro-transcribed to perform segregation analysis by TOPO-TA cloning. WB analysis was carried out to check the impact of the mutations on protein. Two compound heterozygous mutations in PSEN1 exon 10, such as a novel stop-gain mutation (c.1070C > G) and a pathogenic splice variant (c.1129A > T), were found by NGS. Both mutations altered the presenilin 1 protein, truncating its C-terminal portion. This is the first case of CAA and cognitive decline caused by two compound mutations in PSEN1. With this report, we suggest extending the genetic analysis to PSEN1 when cerebral microbleeds are observed by MRI investigation in a patient affected by presenile cognitive decline.  相似文献   

14.
Mutations in POC1B are a rare cause of inherited retinal degeneration. In this study, we present a thorough phenotypic and genotypic characterization of three individuals harboring putatively pathogenic variants in the POC1B gene. All patients displayed a similar, slowly progressive retinopathy (cone dystrophy or cone-rod dystrophy) with normal funduscopy but disrupted outer retinal layers on optical coherence tomography and variable age of onset. Other symptoms were decreased visual acuity and photophobia. Whole genome sequencing revealed a novel homozygous frameshift variant in one patient. Another patient was shown to harbor a novel deep intronic variant in compound heterozygous state with a previously reported canonical splice site variant. The third patient showed a novel nonsense variant and a novel non-canonical splice site variant. We aimed to validate the effect of the deep intronic variant and the non-canonical splice site variant by means of in vitro splice assays. In addition, direct RNA analysis was performed in one patient. Splicing analysis revealed that the non-canonical splice site variant c.561-3T>C leads to exon skipping while the novel deep intronic variant c.1033-327T>A causes pseudoexon activation. Our data expand the genetic landscape of POC1B mutations and confirm the benefit of genome sequencing in combination with downstream functional validation using minigene assays for the analysis of putative splice variants. In addition, we provide clinical multimodal phenotyping of the affected individuals.  相似文献   

15.
Previous studies reported that the proline-rich transmembrane protein 2 (PRRT2) gene was identified to be related to paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions with PKD, PKD with migraine and benign familial infantile epilepsy (BFIE). The present study explores whether the PRRT2 mutation is a potential cause of febrile seizures, including febrile seizures plus (FS+), generalized epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS); thus, it may provide a new drug target for personalized medicine for febrile seizure patients. We screened PRRT2 exons in a cohort of 136 epileptic patients with febrile seizures, including FS+, GEFS+ and DS. PRRT2 genetic mutations were identified in 25 out of 136 (18.4%) febrile seizures in epileptic patients. Five loss-of-function and coding missense mutations were identified: c.649delC (p.R217Efs*12), c.649_650insC (p.R217Pfs*8), c.412C>G (p.Pro138Ala), c.439G>C (p.Asp147His) and c.623C>A (p.Ser208Tyr). PRRT2 variants were probably involved in the etiology of febrile seizures in epileptic patients.  相似文献   

16.
Congenital cataracts (CC) are responsible for approximately one-tenth of childhood blindness cases globally. Here, we report an African American family with a recessively inherited form of CC. The proband demonstrated decreased visual acuity and bilateral cataracts, with nuclear and cortical cataracts in the right and left eye, respectively. Exome sequencing revealed a novel homozygous variant (c.563A > G; p.(Asn188Ser)) in GJA3, which was predicted to be pathogenic by structural analysis. Dominantly inherited variants in GJA3 are known to cause numerous types of cataracts in various populations. Our study represents the second case of recessive GJA3 allele, and the first report in African Americans. These results validate GJA3 as a bona fide gene for recessively inherited CC in humans.  相似文献   

17.
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.  相似文献   

18.
The purpose of this study was to investigate whether polymorphisms in five microRNAs (miRNAs), miR-604A>G, miR-608C>G, 631I/D, miR-938G>A, and miR-1302-3C>T, are associated with the risk of idiopathic recurrent pregnancy loss (RPL). Blood samples were collected from 388 patients with idiopathic RPL (at least two consecutive spontaneous abortions) and 227 control participants. We found the miR-604 AG and AG + GG genotypes of miR-604, the miR-938 GA and GA + AA genotypes of miR-938, and the miR-1302-3CT and CT + TT genotypes of miR-1302-3 are less frequent than the wild-type (WT) genotypes, miR-604AA, miR-938GG, and miR-1302-3CC, respectively, in RPL patients. Using allele-combination multifactor dimensionality reduction (MDR) analysis, we found that eight haplotypes conferred by the miR-604/miR-608/miR-631/miR-938/miR-1302-3 allele combination, A-C-I-G-T, A-C-I-A-C, G-C-I-G-C, G-C-I-G-T, G-G-I-G-C, G-G-I-G-T, G-G-I-A-C, G-G-D-G-C, three from the miR-604/miR-631/miR-938/miR-1302-3 allele combination, A-I-G-T, G-I-G-C, G-I-A-T, one from the miR-604/miR-631/miR-1302-3 allele combination, G-I-C, and two from the miR-604/miR-1302-3 allele combination, G-C and G-T, were less frequent in RPL patients, suggesting protective effects (all p < 0.05). We also identified the miR-604A>G and miR-938G>A polymorphisms within the seed sequence of the mature miRNAs and aligned the seed sequences with the 3′UTR of putative target genes, methylenetetrahydrofolate reductase (MTHFR) and gonadotropin-releasing hormone receptor (GnRHR), respectively. We further found that the binding affinities between miR-604/miR-938 and the 3′UTR of their respective target genes (MTHFR, GnRHR) were significantly different for the common (miR-604A, miR-938G) and variant alleles (miR-604G, miR-938A). These results reveal a significant association between the miR-604A>G and miR-938G>A polymorphisms and idiopathic RPL and suggest that miRNAs can affect RPL in Korean women.  相似文献   

19.
Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model.  相似文献   

20.
CD24 is a cell-surface protein mainly expressed in cells of the immune and central nervous system (CNS), cells that play a critical role in the development of multiple sclerosis (MS). In the current study, we investigated four polymorphisms of the CD24 gene regarding their associations with MS. To this end, univariate and multivariate meta-analysis were applied along with modifications to include data from family-trios so as to increase the robustness of the meta-analysis. We found that the polymorphism 226 C>T (Ala57Val) of the CD24 gene is associated with MS according to the recessive mode of inheritance (odds ratio = 1.75; 95% CI: 1.09, 2.81). Moreover, the 1527–1528 TG>del polymorphism is inversely associated with MS according to the dominant mode of inheritance (odds ratio = 0.57; 95% CI 0.39, 0.83). Conversely, the 1056 A>G and 1626 A>G polymorphisms were not found to be associated with MS. We conclude that the CD24 226 C>T polymorphism increases the risk of MS, while the 1527–1528 TG>del polymorphism seems to have a protective role against MS, suggesting that these two polymorphisms can be used as predictive biomarkers for MS development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号