首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.  相似文献   

2.
3.
The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysiological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5–10 µM) on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal neurons. Conversely, nicotine (0.5–1 µM) preserved neurons throughout the spinal cord and strongly activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine (10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.  相似文献   

4.
Nociceptors sense hazards via plasmalemmal cation channels, including transient receptor potential vanilloid 1 (TRPV1). Nerve growth factor (NGF) sensitises TRPV1 to capsaicin (CAPS), modulates nociceptor excitability and induces thermal hyperalgesia, but cellular mechanisms remain unclear. Confocal microscopy was used to image changes in intracellular Ca2+ concentration ([Ca2+]i) across neuronal populations in dorsal root ganglia (DRG) explants from pirt-GCaMP3 adult mice, which express a fluorescent reporter in their sensory neurons. Raised [Ca2+]i was detected in 84 neurons of three DRG explants exposed to NGF (100 ng/mL) and most (96%) of these were also excited by 1 μM CAPS. NGF elevated [Ca2+]i in about one-third of the neurons stimulated by 1 μM CAPS, whether applied before or after the latter. In neurons excitable by NGF, CAPS-evoked [Ca2+]i signals appeared significantly sooner (e.g., respective lags of 1.0 ± 0.1 and 1.9 ± 0.1 min), were much (>30%) brighter and lasted longer (6.6 ± 0.4 vs. 3.9 ± 0.2 min) relative to those non-responsive to the neurotrophin. CAPS tachyphylaxis lowered signal intensity by ~60% but was largely prevented by NGF. Increasing CAPS from 1 to 10 μM nearly doubled the number of cells activated but only modestly increased the amount co-activated by NGF. In conclusion, a sub-population of the CAPS-sensitive neurons in adult mouse DRG that can be excited by NGF is more sensitive to CAPS, responds with stronger signals and is further sensitised by transient exposure to the neurotrophin.  相似文献   

5.
Mice lacking functional thyroid follicular cells, Pax8−/− mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na+-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, Pax8−/− mice should show deficits in the expression of Na+ currents and potentially also in the expression of Na+/K+-ATPases, which are necessary to maintain low intracellular Na+ levels. We thus compared Na+ current densities in postnatal mice using the patch-clamp technique in the whole-cell configuration as well as the expression of three alpha and two beta-subunits of the Na+/K+-ATPase in wild type versus Pax8−/− mice. Whereas the Na+ current density in hippocampal neurons from wild type mice was upregulated within the first postnatal week, the Na+ current density remained at a very low level in hippocampal neurons from Pax8−/− mice. Pax8−/− mice also showed significantly decreased protein expression levels of the catalytic α1 and α3 subunits of the Na+/K+-ATPase as well as decreased levels of the β2 isoform, with no changes in the α2 and β1 subunits.  相似文献   

6.
The two-pore domain K+ (K2P) channel, which is involved in setting the resting membrane potential in neurons, is an essential target for receptor agonists. Activation of the γ-aminobutyric acid (GABA) receptors (GABAAR and GABABR) reduces cellular excitability through Cl- influx and K+ efflux in neurons. Relatively little is known about the link between GABAAR and the K+ channel. The present study was performed to identify the effect of GABAR agonists on K2P channel expression and activity in the neuroblastic B35 cells that maintain glutamic acid decarboxylase (GAD) activity and express GABA. TASK and TREK/TRAAK mRNA were expressed in B35 cells with a high level of TREK-2 and TRAAK. In addition, TREK/TRAAK proteins were detected in the GABAergic neurons obtained from GABA transgenic mice. Furthermore, TREK-2 mRNA and protein expression levels were markedly upregulated in B35 cells by GABAAR and GABABR agonists. In particular, muscimol, a GABAAR agonist, significantly increased TREK-2 expression and activity, but the effect was reduced in the presence of the GABAAR antagonist bicuculine or TREK-2 inhibitor norfluoxetine. In the whole-cell and single-channel patch configurations, muscimol increased TREK-2 activity, but the muscimol effect disappeared in the N-terminal deletion mutant. These results indicate that muscimol directly induces TREK-2 activation through the N-terminus and suggest that muscimol can reduce cellular excitability by activating the TREK-2 channel and by inducing Cl- influx in GABAergic neurons.  相似文献   

7.
The most common type of spinal cord injury is the contusion of the spinal cord, which causes progressive secondary tissue degeneration. In this study, we applied genetically modified human neural stem cells overexpressing BDNF (brain-derived neurotrophic factor) (F3.BDNF) to determine whether they can promote functional recovery in the spinal cord injury (SCI) model in rats. We transplanted F3.BDNF cells via intrathecal catheter delivery after a contusion of the thoracic spinal cord and found that they were migrated toward the injured spinal cord area by MR imaging. Transplanted F3.BDNF cells expressed neural lineage markers, such as NeuN, MBP, and GFAP and were functionally connected to the host neurons. The F3.BDNF-transplanted rats exhibited significantly improved locomotor functions compared with the sham group. This functional recovery was accompanied by an increased volume of spared myelination and decreased area of cystic cavity in the F3.BDNF group. We also observed that the F3.BDNF-transplanted rats showed reduced numbers of Iba1- and iNOS-positive inflammatory cells as well as GFAP-positive astrocytes. These results strongly suggest the transplantation of F3.BDNF cells can modulate inflammatory cells and glia activation and also improve the hyperalgesia following SCI.  相似文献   

8.
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity.  相似文献   

9.
Neurogenic inflammation and central sensitization play a role in chronic prostatitis/chronic pelvic pain syndrome. We explore the molecular effects of low-intensity shock wave therapy (Li-ESWT) on central sensitization in a capsaicin-induced prostatitis rat model. Male Sprague–Dawley rats underwent intraprostatic capsaicin (10 mM, 0.1 cm3) injections. After injection, the prostate received Li-ESWT twice, one day apart. The L6 dorsal root ganglion (DRG)/spinal cord was harvested for histology and Western blotting on days 3 and 7. The brain blood oxygenation level-dependent (BOLD) functional images were evaluated using 9.4 T fMRI before the Li-ESWT and one day after. Intraprostatic capsaicin injection induced increased NGF-, BDNF-, and COX-2-positive neurons in the L6 DRG and increased COX-2, NGF, BDNF, receptor Trk-A, and TRPV1 protein expression in the L6 DRG and the dorsal horn of the L6 spinal cord, whose effects were significantly downregulated after Li-ESWT on the prostate. Intraprostatic capsaicin injection increased activity of BOLD fMRI responses in brain regions associated with pain-related responses, such as the caudate putamen, periaqueductal gray, and thalamus, whose BOLD signals were reduced after Li-ESWT. These findings suggest a potential mechanism of Li-ESWT on modulation of peripheral and central sensitization for treating CP/CPPS.  相似文献   

10.
Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.  相似文献   

11.
Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model. ahMNCs demonstrate several characteristics associated with neural stem cells (NSCs), including the expression of NSC-specific markers, self-renewal, and multi neural cell lineage differentiation potential. When ahMNCs were transplanted into the lateral ventricle of the SCI animal model, they specifically migrated within 24 h of injection to the damaged spinal cord, where they survived for at least 5 weeks after injection. Although ahMNC transplantation promoted significant locomotor recovery, the injection dose was shown to influence treatment outcomes, with a 1 × 106 (medium) dose of ahMNCs producing significantly better functional recovery than a 3 × 105 (low) dose. There was no significant gain in effect with the 3 × 106 ahMNCs dose. Histological analysis suggested that ahMNCs exert their effects by modulating glial scar formation, neuroprotection, and/or angiogenesis. These data indicate that ahMNCs from patients with hemorrhagic stroke could be used to develop stem cell therapies for SCI and that the indirect injection route could be clinically relevant. Moreover, the optimal transplantation dose of ahMNCs defined in this preclinical study might be helpful in calculating its optimal injection dose for patients with SCI in the future.  相似文献   

12.
The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.  相似文献   

13.
Chronic discogenic back pain is associated with increased inflammatory cytokine levels that can influence the proximal peripheral nervous system, namely the dorsal root ganglion (DRG). However, transition to chronic pain is widely thought to involve glial activation in the spinal cord. In this study, an in vitro model was used to evaluate the communication between DRG and spinal cord glia. Primary neonatal rat DRG cells were treated with/without inflammatory cytokines (TNF-α, IL-1β, and IL-6). The conditioned media were collected at two time points (12 and 24 h) and applied to spinal cord mixed glial culture (MGC) for 24 h. Adult bovine DRG and spinal cord cell cultures were also tested, as an alternative large animal model, and results were compared with the neonatal rat findings. Compared with untreated DRG-conditioned medium, the second cytokine-treated DRG-conditioned medium (following medium change, thus containing solely DRG-derived molecules) elevated CD11b expression and calcium signal in neonatal rat microglia and enhanced Iba1 expression in adult bovine microglia. Cytokine treatment induced a DRG-mediated microgliosis. The described in vitro model allows the use of cells from large species and may represent an alternative to animal pain models (3R principles).  相似文献   

14.
Neuropathic pain is a form of chronic pain arising from damage of the neural cells that sense, transmit or process sensory information. Given its growing prevalence and common refractoriness to conventional analgesics, the development of new drugs with pain relief effects constitutes a prominent clinical need. In this respect, drugs that reduce activity of sensory neurons by modulating ion channels hold the promise to become effective analgesics. Here, we evaluated the mechanical antinociceptive effect of IQM-PC332, a novel ligand of the multifunctional protein downstream regulatory element antagonist modulator (DREAM) in rats subjected to chronic constriction injury of the sciatic nerve as a model of neuropathic pain. IQM-PC332 administered by intraplantar (0.01–10 µg) or intraperitoneal (0.02–1 µg/kg) injection reduced mechanical sensitivity by ≈100% of the maximum possible effect, with ED50 of 0.27 ± 0.05 µg and 0.09 ± 0.01 µg/kg, respectively. Perforated-patch whole-cell recordings in isolated dorsal root ganglion (DRG) neurons showed that IQM-PC332 (1 and 10 µM) reduced ionic currents through voltage-gated K+ channels responsible for A-type potassium currents, low, T-type, and high voltage-activated Ca2+ channels, and transient receptor potential vanilloid-1 (TRPV1) channels. Furthermore, IQM-PC332 (1 µM) reduced electrically evoked action potentials in DRG neurons from neuropathic animals. It is suggested that by modulating multiple DREAM–ion channel signaling complexes, IQM-PC332 may serve a lead compound of novel multimodal analgesics.  相似文献   

15.
Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso–Beattie–Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.  相似文献   

16.
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl-sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl, K+, Na+) and synaptic stimulation of Shaffer’s collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl and pH.  相似文献   

17.
18.
目的探讨有效摘取新生大鼠背根神经节(DRG)的方法,为实验取材奠定基础。方法新生第1天Wistar大鼠,分别采取单独摘取和连同脊髓同时摘取的方法提取DRG神经元,比较两种取材方法获取DRG所需的时间和摘取数量。结果用单独摘取的方式获得的DRG神经元数量为(27±1.15)个,耗时(26.85±1.11)min,连同脊髓同时提取的方式获取的DRG神经元数量为(21.29±1.38)个,耗时(19.64±1.03)min,两者比较有显著差异(P<0.01)。两种方法获得的神经元均可以用于细胞培养。结论采用上述两种方法均可以成功获取背根神经节,可以根据不同的实验目的,选择合适有效的获取方法。  相似文献   

19.
In the present study, we investigated the involvement of the chaperone protein BiP (also known as GRP78 or Hspa5), a master regulator of intracellular proteostasis, in two mouse models of neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). To this end, we used mice bearing partial genetic deletion of the BiP gene (BiP+/− mice), which, for the ALS model, were crossed with mutant SOD1 (mSOD1) transgenic mice to generate mSOD1/BiP+/− double mutant mice. Our data revealed a more intense neurological decline in the double mutants, reflected in a greater deterioration of the neurological score and rotarod performance, with also a reduced animal survival, compared to mSOD1 transgenic mice. Such worsening was associated with higher microglial (labelled with Iba-1 immunostaining) and, to a lesser extent, astroglial (labelled with GFAP immunostaining) immunoreactivities found in the double mutants, but not with a higher loss of spinal motor neurons (labelled with Nissl staining) in the spinal cord. The morphological analysis of Iba-1 and GFAP-positive cells revealed a higher presence of activated cells, characterized by elevated cell body size and shorter processes, in double mutants compared to mSOD1 mice with normal BiP expression. In the case of the PD model, BiP+/− mice were unilaterally lesioned with the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). In this case, however, we did not detect a greater susceptibility to damage in mutant mice, as the motor defects caused by 6-OHDA in the pole test and the cylinder rearing test, as well as the losses in tyrosine hydroxylase-containing neurons and the elevated glial reactivity (labelled with CD68 and GFAP immunostaining) detected in the substantia nigra were of similar magnitude in BiP+/− mice compared with wildtype animals. Therefore, our findings support the view that a dysregulation of the protein BiP may contribute to ALS pathogenesis. As BiP has been recently related to cannabinoid type-1 (CB1) receptor function, our work also opens the door to future studies on a possible link between BiP and the neuroprotective effects of cannabinoids that have been widely reported in this neuropathological context. In support of this possibility, preliminary data indicate that CB1 receptor levels are significantly reduced in mSOD1 mice having partial deletion of BiP gene.  相似文献   

20.
Traumatic spinal cord injury (SCI) initiates a series of cellular and molecular events that include both primary and secondary injury cascades. This secondary cascade provides opportunities for the delivery of therapeutic intervention. Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β (TGF-β) superfamily, regulates various biological processes in mammals. The effects of GDF11 in the nervous system were not fully elucidated. Here, we perform extensive in vitro and in vivo studies to unravel the effects of GDF11 on spinal cord after injury. In vitro culture studies showed that GDF11 increased the survival of both neuronal and oligodendroglial cells but decreased microglial cells. In stressed cultures, GDF11 effectively inhibited LPS stimulation and also protected neurons from ischemic damage. Intravenous GDF11 administration to rat after eliciting SCI significantly improved hindlimb functional restoration of SCI rats. Reduced neuronal connectivity was evident at 6 weeks post-injury and these deficits were markedly attenuated by GDF11 treatment. Furthermore, SCI-associated oligodendroglial alteration were more preserved by GDF11 treatment. Taken together, GDF11 infusion via intravenous route to SCI rats is beneficial, facilitating its therapeutic application in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号