首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common way of treating inflammatory disorders. Their widespread use helped reveal their other modes of action as pharmaceuticals, such as a profound effect on various cancers. Celecoxib has proven to be a very prominent member of this group with cytostatic activities. On the other hand, the highly dynamic field of drug design is constantly searching for new ways of modifying known structures to obtain more powerful and less harmful drugs. A very interesting development is the implementation of carboranes in pharmacologically active structures, mostly as phenyl mimetics. Herein we report the synthesis of three carborane-containing derivatives of the COX-2-selective NSAID celecoxib. The new compounds proved to have promising cytostatic potential against various melanoma and colorectal adenocarcinoma cell lines. Inhibited proliferation accompanied by caspase-independent apoptotic cell death was found to be the main cause of decreased cell viability upon treatment with the most efficient celecoxib analogue, 3 b (4-[5-(1,7-dicarba-closo-dodecaboranyl)-3-trifluoromethyl-1H-pyrazol-1-yl]-1-methylsulfonylbenzene).  相似文献   

2.
Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.  相似文献   

3.
Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.  相似文献   

4.
5.
Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.  相似文献   

6.
Based on previously identified dicarboximides with significant anticancer and immunomodulatory activities, a series of 26 new derivatives were designed and synthesized by the Diels–Alder reaction between appropriate diene and maleimide or hydroxymaleimide moieties. The resulting imides were functionalized with alkanolamine or alkylamine side chains and subsequently converted to their hydrochlorides. The structures of the obtained compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was evaluated in human leukemia (K562, MOLT4), cervical cancer (HeLa), and normal endothelial cells (HUVEC). The majority of derivatives exhibited high to moderate cytotoxicity and induced apoptosis in K562 cells. Microarray gene profiling demonstrated upregulation of proapoptotic genes involved in receptor-mediated and mitochondrial cell death pathways as well as antiapoptotic genes involved in NF-kB signaling. Selected dicarboximides activated JNK and p38 kinases in leukemia cells, suggesting that MAPKs may be involved in the regulation of apoptosis. The tested dicarboximides bind to DNA as assessed by a plasmid DNA cleavage protection assay. The selected dicarboximides offer new scaffolds for further development as anticancer drugs.  相似文献   

7.
Colorectal cancer is the second leading cause of cancer-related mortality. Many current therapies rely on chemotherapeutic agents with poor specificity for tumor cells. The clinical success of cisplatin has prompted the research and design of a huge number of metal-based complexes as potential chemotherapeutic agents. In this study, two zinc(II) complexes, [ZnL2] and [ZnL(AcO)], where AcO is acetate and L is an organic compound combining 8-hydroxyquinoline and a benzothiazole moiety, were developed and characterized. Analytical and spectroscopic studies, namely, NMR, FTIR, and UV-Vis allowed us to establish the complexes’ structures, demonstrating the ligand-binding versatility: tetradentate in [ZnL(AcO)] and bidentate in [ZnL2]. Complexes were screened in vitro using murine and human colon cancer cells cultured in 2D and 3D settings. In 2D cells, the IC50 values were <22 µM, while in 3D settings, much higher concentrations were required. [ZnL(AcO)] displayed more suitable antiproliferative properties than [ZnL2] and was chosen for further studies. Moreover, based on the weak selectivity of the zinc-based complex towards cancer cell lines in comparison to the non-tumorigenic cell line, its incorporation in long-blood-circulating liposomes was performed, aiming to improve its targetability. The resultant optimized liposomal nanoformulation presented an I.E. of 76% with a mean size under 130 nm and a neutral surface charge and released the metal complex in a pH-dependent manner. The antiproliferative properties of [ZnL(AcO)] were maintained after liposomal incorporation. Preliminary safety assays were carried out through hemolytic activity that never surpassed 2% for the free and liposomal forms of [ZnL(AcO)]. Finally, in a syngeneic murine colon cancer mouse model, while free [ZnL(AcO)] was not able to impair tumor progression, the respective liposomal nanoformulation was able to reduce the relative tumor volume in the same manner as the positive control 5-fluorouracil but, most importantly, using a dosage that was 3-fold lower. Overall, our results show that liposomes were able to solve the solubility issues of the new metal-based complex and target it to tumor sites.  相似文献   

8.
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC.  相似文献   

9.
Two series of racemic goniothalamin analogues displaying nitrogen-containing groups were designed and synthesized. A total of 19 novel analogues were evaluated against a panel of four different cancer cell lines, along with the normal prostate cell line PNT2 to determine their selectivity. Among them, goniothalamin chloroacrylamide 13 e displayed the lowest IC50 values for both MCF-7 (0.5 μm ) and PC3 (0.3 μm ) cells, about 26-fold more potent than goniothalamin ( 1 ). Besides its higher potency, compound 13 e also displayed much higher selectivity than goniothalamin. In contrast, goniothalamin isobutyramide 13 c was the most potent analogue against Caco-2 cells (IC50=0.8 μm ), about 10-fold more potent and 17-fold more selective than 1 . These results reveal the potential of compounds 13 c and 13 e for further in vivo studies, representing the first goniothalamin analogues with IC50 values in the low micromolar range and high selectivity against MCF-7, Caco-2, and PC3 cancer cell lines.  相似文献   

10.
11.
The paper presents a detailed study of the biological effects of two amino acid hydroxyurea derivatives that showed selective antiproliferative effects in vitro on the growth of human tumor cell line SW620. Tested compounds induced cell cycle perturbations and apoptosis. Proteins were identified by proteomics analyses using two-dimensional gel electrophoresis coupled to mass spectrometry, which provided a complete insight into the most probable mechanism of action on the protein level. Molecular targets for tested compounds were analyzed by cheminformatics tools. Zinc-dependent histone deacetylases were identified as potential targets responsible for the observed antiproliferative effect.  相似文献   

12.
Colorectal cancer (CRC) is one of the most lethal cancers worldwide. If detected on time, surgery can expand life expectations of patients up to five more years. However, if metastasis has grown deliberately, the use of chemotherapy can play a crucial role in CRC control. Moreover, the lack of selectivity of current anticancer drugs, plus mutations that occur in cancerous cells, demands the development of new chemotherapeutic agents. Several steroids have shown their potentiality as anticancer agents, while some other compounds, such as Taxol and its derivatives bearing a carbamate functionality, have reached the market. In this article, the synthesis, characterization, and antiproliferative activity of four steroidal carbamates on mouse colon carcinoma CT26WT cells are described. Carbamate synthesis occurred via direct reaction between diosgenin, its B-ring modified derivative, and testosterone with phenyl isocyanate under a Brønsted acid catalysis. All obtained compounds were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), High Resolution Mass Spectroscopy (HRMS); their melting points are also reported. Results obtained from antiproliferative activity assays indicated that carbamates compounds have inhibitory effects on the growth of this colon cancer cell line. A molecular docking study carried out on Human Prostaglandin E Receptor (EP4) showed a high affinity between carbamates and protein, thus providing a valuable theoretical explanation of the in vitro results.  相似文献   

13.
We recently discovered a novel nargenicin A1 analog, 23-demethyl 8,13-deoxynargenicin (compound 9), with potential anti-cancer and anti-angiogenic activities against human gastric adenocarcinoma (AGS) cells. To identify the key molecular targets of compound 9, that are responsible for its biological activities, the changes in proteome expression in AGS cells following compound 9 treatment were analyzed using two-dimensional gel electrophoresis (2-DE), followed by MALDI/TOF/MS. Analyses using chemical proteomics and western blotting revealed that compound 9 treatment significantly suppressed the expression of cyclophilin A (CypA), a member of the immunophilin family. Furthermore, compound 9 downregulated CD147-mediated mitogen-activated protein kinase (MAPK) signaling pathway, including c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) by inhibiting the expression of CD147, the cellular receptor of CypA. Notably, the responses of AGS cells to CypA knockdown were significantly correlated with the anticancer and antiangiogenic effects of compound 9. CypA siRNAs reduced the expression of CD147 and phosphorylation of JNK and ERK1/2. In addition, the suppressive effects of CypA siRNAs on proliferation, migration, invasion, and angiogenesis induction of AGS cells were associated with G2/M cell cycle arrest, caspase-mediated apoptosis, inhibition of MMP-9 and MMP-2 expression, inactivation of PI3K/AKT/mTOR pathway, and inhibition of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression. The specific interaction between compound 9 and CypA was also confirmed using the drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA) approaches. Moreover, in silico docking analysis revealed that the structure of compound 9 was a good fit for the cyclosporin A binding cavity of CypA. Collectively, these findings provide a novel molecular basis for compound 9-mediated suppression of gastric cancer progression through the targeting of CypA.  相似文献   

14.
15.
New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases (HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds, 3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition was demonstrated in cell-free kinase assays and Western blot analyses, while unspecific cytotoxic effects could not be observed in LDH release measurements. Proapoptotic formation of reactive oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs (CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both solid and leukemia/lymphoma cell models. The promising results merit further investigations to further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability for new clinical approaches in tumor treatment.  相似文献   

16.
The role of microRNA 122 (miR-122) in colorectal cancer (CRC) has not been widely investigated. In the current study, we aimed to identify the prominent gene and protein interactors of miR122 in CRC. Based on their binding affinity, these targets were chosen as candidate genes for the creation of miR122–mRNA duplexes. Following this, we examined the miRNA-mediated silencing mechanism using the gene-silencing complex protein Argonaute (AGO). Public databases, STRING, and GeneMANIA were utilized to identify major proteins and genes interacting with miR-122. DAVID, PANTHER, UniProt, FunRich, miRwalk, and KEGG were used for functional annotation, pathway enrichment, binding affinity analysis, and expression of genes in different stages of cancer. Three-dimensional duplexes of hub genes and miR-122 were created using the RNA composer, followed by molecular interaction analysis using molecular docking with the AGO protein. We analyzed, classified, and scrutinized 93 miR-122 interactors using various bioinformatic approaches. A total of 14 hub genes were categorized as major interactors of miR-122. The study confirmed the role of various experimentally documented miR-122 interactors such as MTDH (Q86UE4), AKT1 (P31749), PTPN1 (P18031), MYC (P01106), GSK3B (P49841), RHOA (P61586), and PIK3CG (P48736) and put forth several novel interactors, with AKT3 (Q9Y243), NCOR2 (Q9Y618), PIK3R2 (O00459), SMAD4 (P61586), and TGFBR1 (P36897). Double-stranded RNA duplexes of the strongest interactors were found to exhibit higher binding affinity with AGO. In conclusions, the study has explored the role of miR-122 in CRC and has identified a closely related group of genes influencing the prognosis of CRC in multiple ways. Further, these genes prove to be targets of gene silencing through RNA interference and might serve as effective therapeutic targets in understanding and treating CRC.  相似文献   

17.
Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.  相似文献   

18.
A series of deuterated curcuminoids (CUR) were synthesized, bearing two to six OCD3 groups, in some cases in combination with methoxy groups, and in others together with fluorine or chlorine atoms. A model ring-deuterated hexamethoxy-CUR–BF2 and its corresponding CUR compound were also synthesized from a 2,4,6-trimethoxybenzaldehyde-3,5-d2 precursor. As with their protio analogues, the deuterated compounds were found to remain exclusively in the enolic form. The antiproliferative activities of these compounds were studied by in vitro bioassays against a panel of 60 cancer cell lines, and more specifically in human colorectal cancer (CRC) cells (HCT116, HT29, DLD-1, RKO, SW837, and Caco2) and in normal colon cells (CCD841CoN). The deuterated CUR–BF2 adducts exhibited better overall growth inhibition by NCI-60 assay, while for other CUR–BF2 adducts the non-deuterated analogues were more cytotoxic. Results of the more focused comparative cell viability assays followed the same trend, but with some variation depending on cell lines. The CUR–BF2 adducts exhibited significantly higher cytotoxicity than CURs. Structural studies (X-ray and DFT) and computational molecular docking calculations comparing their inhibitory efficacy with those of known anticancer agents used in chemotherapy are also reported.  相似文献   

19.
The tumor microenvironment of colon carcinoma, the site at which tumor cells and the host immune system interact, is influenced by signals from tumor cells, immunocompetent cells, and bacterial components, including LPS. A large amount of LPS is available in the colon, and this could promote inflammation and metastasis by enhancing tumor cell adhesion to the endothelium. Polydatin (PD), the 3-β-D-glucoside of trans-resveratrol, is a polyphenol with anti-cancer, anti-inflammatory, and immunoregulatory effects. This study was designed to explore whether PD is able to produce antiproliferative effects on three colon cancer lines, to reduce the expression of adhesion molecules that are upregulated by LPS on endothelial cells, and to decrease the proinflammatory cytokines released in culture supernatants. Actually, we investigated the effects of PD on tumor growth in a coculture model with human mononuclear cells (MNCs) that mimics, at least in part, an in vitro tumor microenvironment. The results showed that PD alone or in combination with MNC exerts antiproliferative and proapoptotic effects on cancer cells, inhibits the production of the immunosuppressive cytokine IL-10 and of the proinflammatory cytokines upregulated by LPS, and reduces E-selectin and VCAM-1 on endothelial cells. These data provide preclinical support to the hypothesis that PD could be of potential benefit as a therapeutic adjuvant in colon cancer treatment and prevention.  相似文献   

20.
The human epidermal growth factor receptor 2 (HER2) is a well-established oncogenic driver and a successful therapeutic target in several malignancies, such as breast and gastric cancers. HER2 alterations, including amplification and somatic mutations, have also been detected in a small but not negligible subset of patients affected by advanced colorectal cancer (aCRC). However, to date, there are no available oncotargets in this malignancy beyond RAS and BRAF that are available. Here we present an overview on the present predictive and prognostic role of HER2 expression in aCRC, as well as on its consequent potential therapeutic implications from preclinical investigations towards ongoing trials testing anti-HER2 agents in aCRC. While HER2′s role as a molecular predictive biomarker for anti-EGFR therapies in CRC is recognized, HER2 prognostic value remains controversial. Moreover, thanks to the impressive and growing body of clinical evidence, HER2 is strongly emerging as a new potential actionable oncotarget in aCRC. In conclusion, in the foreseeable future, HER2-targeted therapeutic strategies may integrate the algorithm of aCRC treatment towards an increasingly tailored therapeutic approach to this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号