首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pressure drop on the dynamics of fixed-beds were theoretically studied. The system used was an H2/CO mixture (70 vol% H2, 30 vol% CO) in zeolite 5A. The pressure drop at the pressurization step affected the breakthrough time at an adsorption step in the PSA process. As a result, the combined effects of pressure drop during adsorption and pressurization steps led to earlier breakthrough compared to the case without a pressure drop. The effect of pressure drop at the adsorption step under the non-isothermal condition was slightly larger than that under the adiabatic condition. In the case of pressurization and blowdown steps with large pressure drop, the flow pattern near the open end during a short period of time had to be explained by the Ergun equation instead of Darcy’s law. However, there was only a slight difference in the results of a multi-bed PSA process depending on whether or not the pressure drops at the pressurization/depressurization steps as well as at the adsorption step were considered.  相似文献   

2.
Three‐dimensional computational fluid dynamics studies related to dynamics adsorption of CO2 from natural gas is found to be limited. 3D analyses for dynamics adsorption are substantially crucial to give a better prediction on the adsorption process by considering the actual fluid flow behavior within the packed‐bed porous media. A kinetic adsorption model has been integrated in a commercial fluid dynamics simulator to simulate the 3D hydrodynamics and adsorption phenomenon in a zeolite‐filled packed column for a CO2‐methane separation system. The effects of various parameters such as Reynolds number, CO2 feed concentration, feed temperature, and column dimension on CO2 adsorption efficiency have been investigated. A correlation for adsorption efficiency based on the CO2 concentration profiles has been developed and validated.  相似文献   

3.
《分离科学与技术》2012,47(3):434-451
The adsorption equilibrium data of CO2 and N2 at (303, 333, 363, 393, 423) K ranging 0-1 bar on zeolite 5A is reported. The pressure and temperature range covers the operating pressure in adsorption units for CO2 capture from power plants. Experimental data were fitted by the multi-site Langmuir model. The adsorbent is much more selective to CO2: loading at 303 K and 100 kPa is 3.38 mol/kg while loading of N2 at the same pressure is 0.22 mol/kg. The Clausius-Clapeyron equation was employed to calculate the isosteric enthalpy of adsorption. The fixed-bed adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A pellets has been studied. A model based on the bi-LDF approximation for the mass transfer, taking into account the energy and momentum balances, had been used to describe the adsorption kinetics of carbon dioxide and nitrogen. The model predicted satisfactorily the breakthrough curves obtained with carbon dioxide–nitrogen mixtures. Desorption process (consisting of depressurization, blowdown, and purge) was also performed. Following the feasibility of concentration and capture of carbon dioxide from flue gases by Pressure Swing Adsorption (PSA) process was simulated. A CO2 recovery of 91.0% with 53.9% purity was obtained using a five-step Skarstrom-type PSA cycle.  相似文献   

4.
Drying is one of the key steps in the preparation of resorcinol–formaldehyde (RF) gels. Supercritical drying has long been known to be a method by which the structure of RF aerogels has the greatest chance of being perfectly preserved. Although several investigations have been conducted into the effects of the applied drying parameters on the final gels, the structural evolution of the gels during the drying process is nevertheless poorly known. In this work we present an in situ small angle X-ray scattering study of (1) the changes that occur in the structure of RF networks during supercritical drying under various conditions, and (2) the kinetics of the drying process.During the pressurization stage the overall structure of the network remains unaffected by the rate of increase of the CO2 pressure. By contrast, depressurization with supercritical CO2 at rates in excess of 4 bar/min, or with liquid CO2 alone, causes bubbles to form and yields a shrunken state of the final network. This densification preferentially shrinks the larger pores, the smaller pores being much less affected. We find that liquid CO2 is also an efficient drying medium that can preserve the structure, but the depressurization stage must always start from the supercritical state. The incomparable advantage of supercritical CO2, however, is that its higher rate of molecular diffusion makes solvent exchange substantially faster than with liquid CO2.  相似文献   

5.
The adsorption capacity of polyaspartamide (PAA) and multi‐wall carbon nanotubes with polyaspartamide (MWNT‐PAA) was investigated through a packed bed column with the flowing of flue gas composed of 15 % CO2, 5 % O2 and the balance N2. The adsorption performed at 25 °C, 110 kPa and inlet gas flow rate of 60 mL/min resulted in high CO2 adsorption capacity of 5.70 and 10.20 mmol‐CO2/g for PAA and MWNT‐PAA, respectively. The adsorption kinetics was very high, so 7 min were enough for the effluent gas to reach the breakthrough after saturation. The consistency of adsorbents in recurring regeneration was successful through a continuous TSA system of 10 cycle adsorption‐desorption with temperatures of 25–100 °C. The evaluation of heat through differential scanning calorimetry (DSC) resulted in exothermic adsorption with heat release of 45.14 kJ/mol and 124.38 kJ/mol for PAA and MWNT‐PAA, respectively. The heat release was found favourable to promote the desorption as the temperature could rise after adsorption. This is an advantage for energy efficiency, as it depicts the potential of energy recovery. Thus, both adsorbent PAA and MWNT‐PAA were demonstrated to be promising for CO2 adsorption capture in post‐combustion.  相似文献   

6.
用富含胺基的物质对多孔材料进行修饰可以得到高CO2吸附量的吸附剂。采用浸渍法将聚乙烯亚胺(PEI)和2-氨基-2-甲基-1-丙醇(AMP)负载在拟薄水铝石上,考察了CO2压力、胺类物质负载量等对吸附性能的影响。采用低温N2吸附/脱附法(BET)、扫描电镜(SEM)、傅里叶变换红外线光谱分析仪(FTIR)等手段表征了吸附剂的结构特征及其物理性质,并使用重量法微天平实验装置对吸附剂的性能进行了评价。实验结果表明,当温度恒定为50℃,压力小于1 MPa时,负载PEI的吸附剂最高的CO2吸附量为77.53 mg CO2·(g吸附剂)-1,最佳负载量为85%;压力大于1 MPa时,负载PEI的吸附剂最高的CO2吸附量为123.79 mg CO2·(g吸附剂)-1,最佳负载量为10%。负载AMP的吸附剂最高的CO2吸附量为128.01 mg CO2·(g吸附剂)-1,最佳负载量为85%。CO2吸附稳定性实验表明,吸附剂对CO2的吸附性能稳定。  相似文献   

7.
This work evaluates the enzymatic activity of peroxidase (POD) and polyphenoloxidase (PPO) present in the crude extract of mate tea leaves (Ilex paraguariensis St. Hill) submitted to compressed CO2. The effects of temperature, exposure time, solvent reduced density, pressure, and depressurization rate on the activity of peroxidase and polyphenoloxidase were evaluated through a fractionated factorial experimental planning. Results show that temperature of 30 °C, pressure of 70.5 bar, exposure time of 1 h, depressurization rate of 10 kg m−3 min−1 and carbon dioxide reduced density of 0.60 led to an enhancement of around 25% in the peroxidase activity and a polyphenoloxidase activity loss of 50%. Using this experimental condition, thermal stability at low temperature (−4 °C) and the influence of successive pressurization/depressurization cycles were determined. Results suggest that it is possible to increase the specificity of the enzymatic extract towards enhancing POD or PPO activity depending on the experimental condition employed, and that the processing of enzymatic complexes with compressed CO2 may be a promising route to increase the specificity of enzymatic extracts.  相似文献   

8.
A pressure swing adsorption (PSA) process for separating CO from a COCO2N2 mixture is proposed. The adsorbent used in this process is active carbon supported copper, which has been developed by this laboratory. By cycling the pressure of a bed of this adsorbent between ambient pressure and 20–30 Torr at room temperature, high purity CO can be obtained from the COCO2N2 gas mixture with a high recovery. The CO product purity depends crucially on the step of CO cocurrent purge after adsorption in the cycle and the regeneration of sorbent.  相似文献   

9.
Recent developments in separation technology by adsorption have included the development of new structured adsorbents which offer some attractive characteristics compared to a typical packed bed. These improved features include lower energy consumption, higher throughput and superior recovery and purity of product. However, the exact combination of structural, geometric parameters which yields optimum performance is unknown. This study formulates a methodology for comparison based on a variety of analytical and numerical models and uses it to examine the performance of different adsorbent configurations. In particular, monolithic, laminate and foam structures are evaluated and compared to a packed bed of pellets. The effects of physical adsorbent parameters which govern the performance of a PSA process are considered during model development. Comparisons are carried out based on mass transfer kinetics, adsorbent loading and pressure drop of a PSA system for CO2/N2 separation. The results indicated that structured adsorbents can provide superior throughput to packed beds provided their geometrical parameters exceed certain values. For example, laminate structures can offer superior performance to a packed bed of pellets only if the critical sheet thickness and spacing are less than about 0.2 mm. Each adsorbent structure should be designed to operate at its “optimal” velocity. When operating at velocities higher than the “optimal” value, the increase in pressure drop and length of the mass transfer zone more than offsets gains accrued through reduction in cycle time.  相似文献   

10.
Carbon dioxide capture via solvent absorption in packed columns has emerged as a potential technology to mitigate coal-fired power plant CO2 emissions. Parameters, including packing types, solvent properties, and operating conditions, could potentially affect the packed column CO2 capture efficiency. To understand the importance of those parameters and help packed column optimization, a design of experiments (DoEs) method was proposed to generate input parameter matrix. Combined with multiphase computational fluid dynamics (CFD), the random packed column parameter influence on the liquid holdup and interfacial area can be efficiently investigated. Surrogate-based sensitivity analysis shows that the solvent flow rate and contact angle are key factors dictating liquid holdup and interfacial area. On the other hand, solvent viscosity has a marginal impact on the interfacial area. The sensitivity scores were calculated for each input parameter to guide the selection of dimensionless numbers for the liquid holdup and interfacial area correlation development.  相似文献   

11.
A systematic analysis of several vacuum swing adsorption (VSA) cycles with Zeochem zeolite 13X as the adsorbent to capture CO2 from dry, flue gas containing 15% CO2 in N2 is reported. Full optimization of the analyzed VSA cycles using genetic algorithm has been performed to obtain purity‐recovery and energy‐productivity Pareto fronts. These cycles are assessed for their ability to produce high‐purity CO2 at high recovery. Configurations satisfying 90% purity‐recovery constraints are ranked according to their energy‐productivity Pareto fronts. It is shown that a 4‐step VSA cycle with light product pressurization gives the minimum energy penalty of 131 kWh/tonne CO2 captured at a productivity of 0.57 mol CO2/m3 adsorbent/s. The minimum energy consumption required to achieve 95 and 97% purities, both at 90% recoveries, are 154 and 186 kWh/tonne CO2 captured, respectively. For the proposed cycle, it is shown that significant increase in productivity can be achieved with a marginal increase in energy consumption. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4735–4748, 2013  相似文献   

12.
Adsorption of CO2 using zeolite 13X as adsorbent has been studied extensively, but little attention has been paid to CO2 adsorption at very low concentrations such as in the ambient air. Furthermore, there is almost no information on CO2 desorption characteristics. In a carbon enrichment for plant stimulation system, ambient CO2 is enriched from 400 to 1000 ppm to provide an enriched CO2 stream for plant growth in greenhouses. To provide essential design data, systematic performance tests were carried out to evaluate both the adsorption and desorption capacity, enrichment factor, moisture content, and cyclic performance. It was found that the adsorption capacity and CO2 concentration in the enriched air are a function of adsorption temperature and the difference of adsorption and desorption temperatures, for a given adsorbent loading at a properly selected gas flow rate.  相似文献   

13.
In this study, multiphase Eulerian computational fluid dynamics (CFD) modelling is developed to predict the hydrodynamics, mass transfer, and chemical absorption of CO2 using a monoethanolamine (MEA) solution in a structured packed column. First, the hydrodynamic simulation of liquid dispersion in a structured packed bed using a two-dimensional CFD is performed. The simulation results of the radial distribution of the liquid holdup are compared with the literature experimental data. The model prediction matches the experimental data at the top position of the column, whereas a slight deviation is found at the bottom position of the column. Using a validated CFD model, the reactive mass transfer is modelled to study CO2 capture in a structured packed column with Mellapak 500.X. The model results are compared to the literature experimental results of CO2 mole fractions along the height of the column. It is found that the model results match the experimental findings. Furthermore, CFD modelling is extended to investigate the influence of operating conditions such as gas and liquid velocities on CO2 removal efficiency. The present CFD model demonstrates the porous media approach for reactive absorption of CO2 in a structural packed bed.  相似文献   

14.
A solid amine adsorbent was prepared by modifying a porous polystyrene resin (XAD‐4) with chloroacetyl chloride through a Friedel–Crafts acylation reaction, followed by aminating with tetraethylenepentamine (TEPA). The adsorption behavior of CO2 from a simulated flue gas on the solid amine adsorbent was evaluated. Factors that could determine the CO2 adsorption performance of the adsorbents such as amine species, adsorption temperature, and moisture were investigated. The experimental results showed that the solid amine adsorbent modified with TEPA (XAD‐4‐TEPA), which had a longer chain, showed an amine efficiency superior to the other two amine species with shorter chains. The CO2 adsorption capacity decreased obviously as the temperature increased because the reaction between CO2 and amine groups was an exothermic reaction, and its adsorption amount reached 1.7 mmol/g at 10 °C in dry conditions. The existence of water could significantly increase the CO2 adsorption amount of the adsorbent by promoting the chemical adsorption of CO2 on XAD‐4‐TEPA. The adsorbent kept almost the same adsorption amount after 10 cycles of adsorption–desorption. All of these results indicated that amine‐functionalized XAD‐4 resin was a promising CO2 adsorbent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45046.  相似文献   

15.
We evaluated isotherm models for the precise prediction of adsorption equilibrium and breakthrough dynamics. Adsorption experiments were performed using pure N2, CO2 and their binary mixture with an activated carbon (AC) material as an adsorbent. Both BET and breakthrough measurements were conducted at various conditions of temperature and pressure. The corresponding uptake amount of pure component adsorption was experimentally determined, and parameters of the four different isotherm models, Langmuir, Langmuir-Freundlich, Sips, and Toth, were calculated from the experimental data. The predictive capability of each isotherm model was also evaluated with the binary experimental results of binary N2/CO2 mixtures, by means of sum of square errors (SSE). As a result, the Toth model was the most precise isotherm model in describing CO2 adsorption equilibrium on the AC. Based on the breakthrough experimental result from the binary mixture adsorption, non-isothermal modeling for the adsorption bed was performed. The breakthrough results with all of the isotherm models were examined by rigorous dynamic simulations, and the Toth model was also the most accurate model for describing the dynamics.  相似文献   

16.
Aluminum terephthalate, MIL-53(Al), metal–organic framework synthesized hydrothermally and purified by solvent extraction method was used as an adsorbent for gas adsorption studies. The synthesized MIL-53(Al) was characterized by powder X-Ray diffraction analysis, surface area measurement using N2 adsorption–desorption at 77 K, FTIR spectroscopy and thermo gravimetric analysis. Adsorption isotherms of CO2, CH4, CO, N2, O2 and Ar were measured at 288 and 303 K. The absolute adsorption capacity was found in the order CO2>CH4>CO>N2>Ar>O2. Henry’s constants, heat of adsorption in the low pressure region and adsorption selectivities for the adsorbate gases were calculated from their adsorption isotherms. The high selectivity and low heat of adsorption for CO2 suggests that MIL-53(Al) is a potential adsorbent material for the separation of CO2 from gas mixtures. The high selectivity for CH4 over O2 and its low heat of adsorption suggests that MIL-53(Al) could also be a compatible adsorbent for the separation of methane from methane–oxygen gas mixtures.  相似文献   

17.
The capture and concentration of CO2 from a dry flue gas by vacuum swing adsorption (VSA) has been experimentally demonstrated in a pilot plant. The pilot plant has the provision for using two coupled columns that are each packed with approximately 41 kg of Zeochem zeolite 13X. Breakthrough experiments were first carried out by perturbing a N2 saturated bed with 15% CO2 and 85% N2 feed, which is representative of a dry flue gas from coal‐fired power plants. The breakthrough results showed long plateaus in temperature profiles confirming a near adiabatic behavior. In the process study, a basic four‐step vacuum swing adsorption (VSA) cycle comprising the following steps: pressurization with feed, adsorption, forward blowdown, and reverse evacuation was investigated first. In the absence of any coupling among the steps, a single bed was used. With this cycle configuration, CO2 was concentrated to 95.9 ± 1% with a recovery of 86.4 ± 5.6%. To improve the process performance, a four‐step cycle with light product pressurization (LPP) using two beds was investigated. This cycle was able to achieve 94.8 ± 1% purity and 89.7 ± 5.6% recovery. The Department of Energy requirements are 95% purity and 90% recovery. The proposed underlying physics of performance improvement of the four‐step cycle with LPP has also been experimentally validated. The pilot plant results were then used for detailed validation of a one‐dimensional, nonisothermal, and nonisobaric model. Both transient profiles of various measured variables and cyclic steady state performance results were compared with the model predictions, and they were in good agreement. The energy consumptions in the pilot plant experiments were 339–583 ± 36.7 kWh tonne?1 CO2 captured and they were significantly different from the theoretical power consumptions obtained from isentropic compression calculations. The productivities were 0.87–1.4 ± 0.07 tonne CO2 m?3 adsorbent day?1. The results from our pilot plant were also compared with available results from other pilot plant studies on CO2 capture from flue gas. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1830–1842, 2014  相似文献   

18.
CO2 capturing technologies have attracted significant attention in order to limit emissions and reduce their negative effect on the environment. Mesoporous silica materials (MCM-41) are easily recyclable, affordable, and thermally and mechanically stable, providing added benefits in CO2 capture. However, further studies are necessary to characterize the effects of MCM-41 pore size, adsorption temperature and surface silylation on CO2 adsorption efficiency. In this work, mesoporous silica is synthesized using alkyltrimethylammonium bromide with different chain lengths (CnH2n + 1 N(CH3)3Br, n = 14, 16 and 18) as structure-directing agents, and the adsorption capacity of CO2 on TTMCM-41 (C17H38NBr), CTMCM-41 (C19H42NBr), DTMCM-41(C21H46NBr) samples was measured gravimetrically at room temperature and pressure up to 40 bar. The silica structures were characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy (TEM). The XRD, N2 adsorption–desorption and TEM measurements indicated the presence of a well-ordered hexagonal array with uniform mesostructures. The mesoporous silica obtained, denoted as TTMCM-41, CTMCM-41 and DTMCM-41, had distinct physical properties, such as BET surface area, hexagonal unit cell, pore volume, pore diameter and pore wall thickness. CTMCM-41 exhibited an adsorption capacity (0.58 g CO2/g adsorbent) of more than DTMCM-41 (0.48 g CO2/g adsorbent) and TTMCM-41 (0.42 g CO2/g adsorbent). The results suggest that CTMCM-41 can be a better mesoporous adsorbent for CO2 adsorption .  相似文献   

19.
We successfully prepared a novel fibrous adsorbent for carbon dioxide (CO2) capture by coating polyethylenimine (PEI) on a glass fiber matrix, using epoxy resin (EP) as crosslinking agent. The physicochemical properties of the fibrous adsorbents were characterized in terms of Fourier transform infrared spectrometry and thermogravimetric analysis. Factors that affected the adsorption capacity of the fibrous adsorbent were studied, including the crosslinking agent dosage, coating weight, moisture, adsorption temperature, and CO2 concentration of the simulated flue gas. The experimental results indicate that the properly crosslinked fibrous adsorbent had a high thermal stability at about 280°C. With a PEI/EP ratio of 10:1, a maximum adsorption capacity of 276.96 mg of CO2/g of PEI was obtained at 30°C. Moisture had a promoting influence on the adsorption of CO2 from flue gas. The CO2 adsorption capacity of the fibrous adsorbent in the presence of moisture could be 19 times higher than that in dry conditions. The fibrous adsorbent could be completely regenerated at 120°C. The CO2 adsorption capacity of the regenerated fibrous adsorbent was almost the same as that of the fresh adsorbent. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A novel design of a compact rapid pressure swing adsorption system consisting of a single adsorber enclosed inside a product storage tank is proposed for application as a medical oxygen concentrator (MOC). A self‐contained test unit for the process is constructed which is capable of directly and continuously producing 1–3 sl/m of 90% O2 from compressed air. Pelletized LiLSX zeolite is used as the air separation adsorbent. Steady state process performance data [bed size factor (BSF) and O2 recovery (R) as functions of total cycle time (tc)], as well as transient, cyclic, adsorber pressure, and temperature profiles are presented. A four‐step Skarstrom‐like pressure swing adsorption cycle was used. Two options for column pressurization, (a) using compressed feed air cocurrently or (b) using a part of the oxygen‐enriched product gas counter‐currently were evaluated. Option (b) exhibited superior performance. The optimum total cycle time for option (b) was 5–6 s where the BSF was lowest (~45 kgs/TPD O2) and the corresponding R was ~29.3%. These numbers indicate that the adsorbent inventory of a MOC can be potentially reduced by a factor of three while offering a ~10–20% higher O2 recovery compared to a typical commercial unit. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3330–3335, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号