首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal conductivity of calcium-doped aluminium nitride ceramics   总被引:1,自引:0,他引:1  
Aluminium nitride ceramics were prepared with the addition of up to 12wt% of calcium oxide as a sintering aid. Both the oxygen and the calcium content of the samples decreased during sintering with increasing sintering temperature and soaking time. Higher amounts of calcium oxide resulted in higher thermal conductivities, with values up to 142 W m–1 K–1. Moderate sintering temperatures, short temperature soaking times and the use of inexpensive Ca-based sintering additives should enable the production of aluminium nitride ceramics with sufficiently high thermal conductivity at relatively low cost.  相似文献   

2.
From thermal diffusivity measurements of sintered AIN at temperatures ranging from 100 to 1000 K, the phonon mean free path of AIN was calculated in order to investigate phonon scattering mechanisms. The calculated mean phonon scattering distance was increased with decreasing temperature. The mean phonon-defect scattering distances were respectively limited to about 50 nm at temperatures ranging from 100 to 270 K and about 30 nm at temperatures ranging from 100 to 700 K, for AIN specimens with a room-temperature thermal conductivity of 220 and 121 Wm–1 K–1 containing 0.1 and 1.4 wt % oxygen, respectively. These short phonon-defect scattering distances were considered to correspond to the separation of oxygen-related internal defects in AIN grains. Calculation of the mean phonon scattering frequencies indicated that the phonon scattering is dominated by phonon-defect scattering at temperatures below 270 K for an AIN specimen with an oxygen content of 0.1 wt %, and at temperatures below 350 K for an AIN specimen with an oxygen content of 1.4 wt %.  相似文献   

3.
Synthesis of oxygen-free aluminium nitride ceramics   总被引:2,自引:0,他引:2  
The aluminum nitride raw material in the form of powder was synthesized using the Self propagating High temperature Synthesis (SHS) method which provides no oxygen impurities. Then AIN powder was sintered to the full density without sintering additives and under a high pressure in a belt apparatus. For the AIN ceramics obtained the temperature dependences of the thermal diffusivity were measured with the laser-flash method. Finally we produced oxygen-free aluminium nitride ceramics with parameters comparable with theoretical data.  相似文献   

4.
5.
6.
Aluminium nitride ceramics with no sintering additives could be densified to close to theoretical density (99.6% theoretical) by pressureless sintering of tape-cast green sheets at 1900 °C for 8 h. The thermal conductivity and bending strength of the specimens were 114 Wm–1 K–1 and 240 MPa, respectively. The effect of Y2O3 additive on sinterability, thermal conductivity and microstructure of aluminium nitride ceramics was investigated. Thermal conductivity increased with increasing amount of Y2O3 additive, sintering temperature and holding time at the sintering temperature. Samples with a thermal conductivity up to 258 Wm–1 K–1 were fabricated by elimination of the grain-boundary phase.  相似文献   

7.
8.
In this paper, erosion wear behaviour of aluminium nitride (AlN) ceramics is studied. The influence of particle hardness and shape on erosion of the AlN surface is examined. The effect of varying the impingement angle on the weight loss and the roughness parameters of AlN ceramics testing sample is also determined. Therefore, erosive wear behaviour of AlN ceramics was investigated using SiC and SiO2 particles as erodents, at following impact angles: 30°, 45°, 60°, 75° and 90°. Scanning electron microscopy (SEM) was used to analyze the eroded surfaces in order to determine erosion mechanisms. The roughness parameters (Ra, Rz and Rmax), before and after erosion with SiO2 and SiC particles at 30° and 90° angles of impingement, respectively, were determined using a profilometer. It was found that the impact angle is influencing the erosion wear of the AlN ceramics and maximum erosion takes place at impact angle of 90°. The results indicate that hard, angular SiC particles cause more damage than softer, more rounded SiO2 particles.  相似文献   

9.
10.
Thermal expansion of grain-boundary cracked aluminium titanate ceramics   总被引:1,自引:0,他引:1  
The relation between thermal expansion coefficient and grain-boundary crack volume of aluminium titanate ceramics has been calculated based on the thermal expansion data of a single crystal. The calculation began with the drawing of a frequency distribution curve of the thermal expansion coefficient for a single grain. Using the single-grain distribution curve, a distribution curve of an average coefficient for two adjacent grains was derived. The thermal expansion with a partially grain-boundary cracked body was calculated in relation to the amount of cracked boundary from the average distribution curves. The expected relation between crack volume and thermal expansion was close to that of the experimental data.  相似文献   

11.
Norton NBD 200 silicon nitride ceramics were implanted with sodium to a dose of 7.0×1015cm-2 at 72 keV (1 at% peak sodium content at 100 nm). The sodium-implanted samples were further implanted with aluminium to 7.3×1015cm-2 at 87 keV (1 at% peak aluminium content at 100 nm). The implanted and unimplanted samples were oxidized in 1 atm dry oxygen at 1100 and 1300°C for 2–6 h. Profilometry and scanning electron microscopy measurements indicated that sodium implantation led to up to a two-fold increase in the oxidation rate of silicon nitride. The sodium effect was effectively neutralized when aluminium was co-implanted. The opposite effects of sodium and aluminium on the oxidation resistance of silicon nitride can be attributed to their different roles in modifying the structure and properties of the oxide formed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
电子电器设备中元器件的高密度集成使得散热问题日益突出,对导热材料的需求不断增长。本文以聚对苯二甲酸乙二醇酯(PET)为基体,六方氮化硼(h-BN)作为导热填料,通过熔融共混法制备h-BN/PET复合材料,考察了h-BN含量和PET基体聚集态结构对复合材料导热性能的影响,分析了复合材料的导热机制,并从材料应用的角度探讨了复合材料导热系数的温度依赖性和散热效果。结果表明,PET基体的结晶度和h-BN含量对复合材料的最终导热系数均有贡献,复合材料的导热系数随结晶度和h-BN含量的增加而提升。h-BN发挥了异相成核作用,显著加快了PET的结晶速度,提高了PET的结晶度。模压成型中h-BN受剪切应力驱使在PET基体中沿流动方向取向,导致复合材料呈现明显的各向异性特征。面内方向h-BN的有序排列为声子提供了更为通畅的传导通道。当h-BN含量为50wt%时,复合材料的面内与面间导热系数分别达到最大值3.00 W·(m·K)-1和2.19 W·(m·K)-1。h-BN/PET复合材料具有良好的散热效果,h-BN含量越高,复合材料的冷却速率越快,散热过程中温度...  相似文献   

13.
The infiltration of solid powder mixtures with molten aluminium has been investigated as a potential route for the synthesis of ceramic/metal composites. Either titanium or tantalum powder was mixed with boron nitride flakes for the reaction powder mixture. The infiltration occurred spontaneously at 1473K for both [Ti+BN] and [Ta+BN] powder mixtures. Owing to reactions between the starting materials, both boride and nitride ceramics were produced in molten aluminium. TiB2 and AlN were produced from the [Ti+BN] powder mixture, and TaB2 and AlN were produced from the [Ta+BN] powder mixture. When the [Ti+BN] powder mixture was used, a reaction producing Al3Ti took place immediately after the infiltration of the molten aluminium, and a subsequent reaction producing TiB2 and AlN proceeded gradually. The time required to convert BN flakes to TiB2 and AlN particles at 1473K was in the range of 1800–3600 s. On the other hand, when the [Ta+BN] powder mixture was used, there was an initial incubation period to allow the tantalum and molten aluminium to react with each other. The reaction between tantalum, BN and aluminium took place after this incubation period. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Two kinds of additive-free silicon nitride ceramics were brazed with aluminium; one was with as-ground faying surfaces and the other was with faying surfaces heat-treated at 1073K for 1.8 ksec in air. The heat-treatment of the silicon nitride ceramics formed a silicon oxynitride layer on the faying surfaces and increased the brazing strength of the joints. A silica-alumina non-crystalline layer and a β′-sialon layer were formed successively from the aluminium side at the interface of the joints. The heat-treatment which made the former layer thicker is a necessary process in making reliable, strong brazed joints.  相似文献   

15.
AIN with high thermal conductivity was fabricated by pressureless sintering with Y2O3 as the sintering aid. The thermal conductivity was observed to increase with sintering time (up to 8 h) at 1810 °C. The distribution of the sintering aid was identified as one of the major factors influencing the thermal conductivity in AIN. Non-uniform distribution of the grain boundary phase was found to be associated with a significant amount of porosity, resulting in the enhancement of phonon scattering and thereby lowering the thermal conductivity.  相似文献   

16.
The oxidation kinetics of polycrystalline aluminium nitride substrates in air at temperatures in the range 1150 to 1750°C have been studied by measuring the weight increase in the oxidized samples. At the lowest temperature, the oxide layer was not continuous on the AlN surface and the oxidation kinetics followed a linear rate law with an activation energy of 175 kJ mol–1. At all the higher temperatures, the growth kinetics followed a parabolic rate law with an activation energy of 395 kJ mol–1. Samples oxidized at these higher temperatures were covered with a dense oxide layer having a fine-grained microstructure.  相似文献   

17.
The conduction mechanism in Mg2 + and Al3 + substituted Li0.5Fe2.5O4 with general formula MgxAl2xLi0.5(1 − x)Fe2.5(1 − x)O4 (x = 0.0, 0.2, 0.5, 0.6 and 0.7) has been studied by means of compositional and temperature dependent d.c. resistivity, thermoelectric power and I–V characteristics measurements. It is found that ferrites are electronic conductors. For x = 0.0 and 0.2 conduction is due to holes, while for x = 0.5, 0.6 and 0.7 it is due to electrons. Thermal variation of mobilities and activation energies determined through d.c. resistivity measurements confirm the formation of small polarons. The sample with x = 0.0 exhibits switching phenomena.  相似文献   

18.
The growth of oxide films on two types of aluminium nitride substrates of different origin has been studied as a function of temperature. At a given set of oxidation reaction parameters, the oxide layers grown on substrates with a relatively large grain size and high concentrations of Y-Al-O-based liquid sintering aid phases (type I substrates) were observed to be thicker and more diffuse than those obtained on substrates with an average particle size of approximately 3 m and low liquid sintering aid concentrations (type II substrates). The effects of the oxygen partial pressure variation on the oxide film growth have been investigated for the oxidation of type II AIN substrates. The kinetics of the growth of oxide films on such substrates were analysed and determined to fit best to a linear rate law. This type of rate law indicates that the rate-limiting step in the growth of oxide films on high-quality type II aluminium nitride substrates is an interface reaction-controlled process.  相似文献   

19.
The hydrophobing of AIN powders through adsorption of capric acid, stearic acid and cetyl alcohol on the particle surface was investigated by statistical analysis. Stearic acid as surface adsorbent and cyclohexane as solvent were identified as the best combination for achieving highly effective hydrophobicity of AIN. The adsorption data obtained for this combination indicated a Langmuir chemisorption isotherm. Even after 96 h leaching in water, no crystalline phase other than AIN could be detected by X-ray diffraction (XRD).  相似文献   

20.
The wettability of aluminium nitride by Sn–Al melts was studied by the sessile drop method in a vaccum of 2 × 10–3 Pa at 1100 °C over the whole concentration region. The minimum interval on the contact-angle concentration dependence curve was observed at intermediate composition. For comparison, experiments were also performed on porous AlN. Wetting of porous nitride is worse than the dense nitride. The results have been analysed on the basis of the relation between wettability and the chemical interface reactivity in solid–liquid metal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号