首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
The magnetic and structural properties of FINEMET alloy with a composition of Fe75.5Cu1Nb1Si13.5B9 were investigated after primary and secondary crystallization of amorphous ribbon sample.The crystallization behavior and the nanocrystal formation of the samples were performed by differential thermal analysis(DTA) which in turn was supported by X-ray diffraction(XRD) study.Temperature dependence of initial permeability of amorphous and devitrified toroid shaped samples has been measured.Enhancement of Curie temperature of the amorphous alloy has been observed due to the irreversible structural relaxation.With the appearance of nanocrystalline phase the Curie temperature of the residual amorphous phase gradually decrease with the increase of annealing temperature.Their temperature dependence reflects the characteristic annealing temperature evolution of the basic magnetic parameters in these nanocrystalline systems.Saturation magnetization,Ms,increases with annealing temperature Ta for the samples and finally decreases during annealing at a temperature much higher than peak crystallization temperature.  相似文献   

2.
Under different magnetic field intensities,the dependence of the permeability μon temperature T(μ-T curve) for the Fe73.5Cu1Nb3Si13.5B9 alloy annealed at 350-620℃ was investigated.The results showed that the magnetic field intensity had a remarkable influence on the shape of μ-T curves.For amorphous alloy,the sharp Hopkinson peak of μ-T curve disappeared gradually with the increase of magnetic field intensity.  相似文献   

3.
1. IntroductionRecent works on the properties of Fe-basednanocrystalline alloys have generated considerable interest in the filed of materials because of their excellent soft magnetic characteristi.s[1'21. As a newlydeveloped material, the origin of the excellent softmagnetic characteristics was not clear yet. H..z.r[3]et al. have suggested that smaller magnetic crystallineanisotropy is one of the most important factors whichdominate the excellent soft magnetic characteristics,but the explanat…  相似文献   

4.
Nanosize particles of CoFe2O4 have been synthesized by the citrate precursor technique. Considerably higher coercive force (1.68 kOe) than that obtained by the conventional technique (1.00 kOe) is associated with the nanostructure of CoFe2 O4. These nanosize ferrimagnetic CoFe2O4 particles exhibit chainlike clusters indicating strong interparticle interactions and reduced magnetic moment, which is attributed to anisotropy and canted spin structure at the surface of the particle. The magnetization shows a peak just below the Curie temperature Tc during heating in the presence of a small magnetic field (the Hopkinson effect), On the other hand, the magnetization increases monotonically when the system is cooled from T c. This peak is associated with the single domain behavior of nanocrystalline CoFe2O4 particles and explained within the mathematical formalism given by Stoner and Wohlfarth in conjunction with other explanations of Hopkinson effect  相似文献   

5.
The magnetic properties of Fe72.5 Cu1Nb2V2Si13.5B9 alloy are investigated from an amorphous to a nanocrystalline and complete crystalline state.The sample annealed at 550℃ for 0.5h shows a homogeneous nanocrystalline structure and presents excellent soft magnetic properties.When the specimens were annealed at a temperature above 600℃,the magnetic properties are obviously deteriorated because the grain size grows up,exceeding the exchange length.  相似文献   

6.
2024-T3铝合金动力学实验及其平板鸟撞动态响应分析   总被引:1,自引:0,他引:1  
通过电子万能试验机和分离式霍普金森拉杆(SHTB)拉伸试验分别获得2024-T3铝合金材料准静态和高应变率两种应变率下的应力-应变曲线。铝合金材料的本构关系由能够反映材料硬化效应和应变率强化效应的Johnson-Cook材料模型描述,方程中的4个参数通过不同应变率下的应力-应变曲线拟合得到。基于瞬态动力学软件PAM-CRASH,结合材料动态力学性能试验所获得的2024-T3铝合金Johnson-Cook模型方程,耦合光滑粒子流体动力学(SPH)方法和有限元(FE)方法建立2024-T3铝合金平板的鸟撞数值模型,数值计算所得动态响应与鸟撞试验结果吻合较好,表明建立的鸟撞数值计算模型是合理、可靠的,整个分析流程从材料动态力学性能试验、鸟撞数值计算到最终的鸟撞试验验证为飞机结构的抗鸟撞设计与分析提供了有力的参考。  相似文献   

7.
研究了10钟以铁钴镍为基的非昌态软磁材料,对非晶态合金的成分,熔点,晶化温度,居里温度及一些磁性能作了分析比较、将将材料制成元件装到电子镇流器上试验,研究结果表明,铁磁元素铁钴镍的含量比例,是影响非晶态磁性的主要因素;类金属元素对软磁材料的磁性能也有一定的影响,含磷的非晶态合金的熔点,晶化温度及居里温度比含碳的较高。  相似文献   

8.
Nanostructured materials provide access to tailor‐made materials properties by microstructural design. Excellent mechanical properties such as high strength or wear resistance are often found in nanocrystalline materials. For magnetic materials, the design of nanostructured composites offers advantages if the structural scales match the intrinsic magnetic length scales. In some cases, as in the new nanocrystalline soft magnetic alloys, the combination of amorphous and nanocrystalline phases is necessary to obtain the desired properties. This rises the question of the limiting size for a stable crystalline structure, especially in contact with an amorphous phase. These considerations, which have been of interest for basic research in the context of the microcrystalline model for amorphous materials, are of technical importance for the optimization of nanostructured composites. Recent model experiments about the stability of thin Fe‐based glass forming alloy films are reviewed. A relationship between phase stability, composition, and interface density has been established. The implications of the results for the design of nanostructured alloy systems are discussed.  相似文献   

9.
利用非晶态分子合金作前驱体,在相对低的热分解温度800℃、10h成功合成了钙钛矿结构(La0.52Gd0.15)Sr0.33MnO3多晶颗粒.TEM观察表明,颗粒的尺寸范围为100~150nm.研究了多晶颗粒(La0.52Gd0.15)Sr0.33MnO3的居里温度和磁熵变化(MCE).在多晶颗粒(La0.52Gd0.15)Sr0.33MnO3中,居里温度(343K)附近观察到较大的磁熵变和较宽的峰值温度范围,较大的磁熵变来源于磁场条件下的铁磁转变贡献.这些结果表明,该材料是室温附近磁制冷合适的工作物质.  相似文献   

10.
为了改善Mg-Ni合金的电化学性能,采用高能球磨技术合成了Mg-Zr-Ni储氢合金,通过改变球磨条件和添加合金元素Zr,利用XRD物相分析和电化学测量技术,研究了Mg-Ni合金的组织演变过程及其对电化学容量的影响.结果表明,高能球磨Mg-Ni和Mg-Zr-Ni合金都经历了非晶态向纳米晶态的转变过程,用少量Zr替代部分Mg后,促进了高能球磨Mg-Zr-Ni合金的非晶化和纳米晶化的过程.与非晶态Mg(Zr)Ni相比,纳米晶的Mg(Zr)Ni中氢更易放出,放电曲线主要呈现高电位放电特征,添加Zr后合金的放电容量有所下降.  相似文献   

11.
Amorphous soft magnetic Fe80?x V x B12Si8 ribbons (0 ≤ x ≤ 14) have been fabricated by melt spinning technique, and their magnetic and magnetocaloric properties have been studied. The value of magnetocaloric effect has been determined from the measurements of magnetization as a function of temperature and an external magnetic field. The addition of vanadium to the ternary Fe80B12Si8 alloy results in a decrease of the Curie temperature of amorphous alloys, T C, from 473.5 to 335 K. With an increasing V content, the average magnetic moment of Fe atom and the magnetic entropy change also decrease. Fe66.3V13.7B12Si8 alloy exhibits the highest refrigeration capacity of 93.7 J kg?1 and moderate peak magnetic entropy of 1.034 J kg?1 K?1 (T C = 335 K) under the maximum applied field of 2 T. The results from this work showed that V containing amorphous alloy 13.7 at. % is an interesting material and potential candidate for magnetic refrigerants working near room temperature. The observed ?ΔSM max values compare favorably with other amorphous Fe-based alloys.  相似文献   

12.
通过高能球磨技术制备了Fe78Si13B9磁性非晶合金粉体,采用XRD和DSC分析了Fe78Si13B9非晶合金粉体的相组成、玻璃转变温度Tg、开始晶化温度 Tx 和晶化峰温度Tp;利用放电等离子烧结(SPS)技术在不同烧结温度下制备了块体磁性非晶纳米晶合金试样,利用XRD、SEM、Gleeble3500、VSM等分析了不同烧结温度下烧结块体试样的相转变特性、微观形貌、力学性能和磁学性能。结果表明,在500 MPa的烧结压力下,随着烧结温度的升高,烧结试样中的非晶相开始逐渐晶化,烧结试样的致密度、抗压强度、微观硬度、饱和磁化强度均显著提高;在500 MPa的烧结压力和823.15 K的烧结温度下,获得了密度为6.6 g/cm3,抗压强度为1500 MPa,饱和磁化强度为1.3864 T的非晶纳米晶磁性材料。  相似文献   

13.
Crack growth resistance curves have been determined for crack-divider laminates in which layers of 2024-T3 aluminum alloy are adhesively bonded to layers of 7075-T6 alloy. Results are compared with the fracture resistance of laminates consisting wholly of each material, the layer thickness being the same (1.54 mm) in all cases. The initial portions of the resistance curves are similar for both alloys; however those for 2024-T3 have steeper slopes at longer effective crack lengths. As a result, laminates consisting entirely of 2024-T3 alloy exhibit greater amounts of stable crack extension and higher toughnesses at instability. This is attributed in part to the greater strain hardening rate in 2024-T3 material. Laminates combining 2024-T3 and 7075-T6 layers are intermediate between those consisting entirely of one or the other alloy.  相似文献   

14.
We have studied the structural transformations and deformation behavior of an amorphous Al85Ni10La5 alloy during nanoindentation and uniaxial tension tests and assessed the influence of crystalline phases resulting from lamp processing and heat treatment. Our results confirm the high effectiveness of lamp processing: at identical phase compositions, the lamp processing time is shorter by more than two orders of magnitude. The microplasticity of the amorphous alloy has been shown to manifest itself in both nanoindentation and uniaxial tension tests. The high proportion of local plasticity in the work of indentation has been accounted for in terms of possible intercluster sliding. The observed lamp processing- and heat treatmentinduced changes in the hardness of the alloy reflect changes in its phase composition and the percentages of the amorphous and crystalline phases, which does not rule out a cluster mechanism of local deformation or its deceleration by nanocrystalline phases in the amorphous–nanocrystalline structure.  相似文献   

15.
The effect of microforging on the processing of nanocrystalline FeSiB alloy flakes was studied in terms of microstructure and magnetic properties. The flakes microforged from amorphous precursor showed submicron thicknesses with the crystal size of about 15 nm. The crystallite size during microforging was primarily deter- mined by plastic deformation rather than fracturing and agglomeration. Unlike the general trend of coercivity reduction with annealing, the coercivity of the nanocrystalline flakes was slightly increased with increasing an- nealing temperature, which can be explained with the diffusion anisotropy of the magnetic moments resulting from the formation of Fe-atoms pairs. The magnetic remanence (Mr) of the planar nanocrystalline flakes was measured to be about 26% of the saturation magnetization (Ms), a significant increase from 2% of the initial amorphous precursor.  相似文献   

16.
Experimental data on microstructural (crystalline volume fraction, grain size) and magnetic (coercive field) properties in amorphous and nanocrystalline Fe73.5-x(Co0.5Ni0.5)xSi13.5B9Nb3Cu1 alloy ribbons (x = 2.5, 5 and 10) are presented. Nanocrystalline structure was developed by annealing the precursor amorphous ribbons by current annealing (CA) and stress-current-annealing (SA). Microstructural analysis of the treated ribbons using X-ray Diffraction showed a high content of amorphous phase in the bulk. In addition, substantial changes in the crystalline state such as grain size of the samples annealed at different conditions were observed. The alloy composition also affects greatly the grain size,: increasing the (Co,Ni) content leads to higher values of the average grain size. The evolutions of the coercive field with the two kinds of thermal treatment were analysed, allowing us to conclude that the addition of (Co,Ni) tends to reduce the magnetic softness character of the original material, while the treated SA samples show higher coercivities higher than those treated without by CA.  相似文献   

17.
Conventional physical metallurgy approaches to improve soft ferromagnetic properties involve tailoring chemistry and optimizing microstructure. Alloy design involves consideration of induction and Curie temperatures. Significant in the tailoring of microstructure is the recognition that the coercivity, (H c) is roughly inversely proportional to the grain size (D g) for grain sizes exceeding ∼0·1−1 μm (where the grain size exceeds the Bloch wall thickness,δ). In such cases grain boundaries act as impediments to domain wall motion, and thus fine-grained materials are usually harder than large-grained materials. Significant recent development in the understanding of magnetic coercivity mechanisms have led to the realization that for very small grain sizesD g<∼100 nm,H c decreases sharply with decreasing grain size. This can be rationalized by the extension of random anisotropy models that were first suggested to explain the magnetic softness of transition-metal-based amorphous alloys. This important concept suggests that nanocrystalline and amorphous alloys have significant potential as soft magnetic materials. In this paper we have discussed routes to produce interesting nanocrystalline magnets. These include plasma (arc) production followed by compaction and primary crystallization of metallic glasses. A new class of nanocrystalline magnetic materials, HITPERM, having high permeabilities at high temperatures have also been discussed.  相似文献   

18.
The bulk specific heat of fully dense nanocrystalline Ni–P electrodeposits with essentially constant P content (about 4 at%) and varying average grain sizes from 6.9 to 28.9 nm was investigated using modulated differential scanning calorimetry. In the lower temperature range from room temperature to 120 °C, at which the as-deposited sample microstructure was thermally stable, the bulk specific heat varied only within ~2 % despite the substantial variation of interface volume fractions from 0.11 to 0.39 for this series of samples. Moreover, the measured bulk specific heat values of the Ni–P samples were all located within the reported specific heat value range for conventional polycrystalline Ni. Evidently, the contribution due to grain size-related interface excess free volume is negligible and the bulk specific heat for the materials can be characterized as a structure-insensitive property. In the elevated temperature range from 150 °C to the Curie temperature of 357 °C, the magnetic contribution to the specific heat was significantly influenced by the chemical environment of P in the Ni–P samples. When P atoms were in the form of supersaturated solution in the nickel matrix, a complete suppression of the characteristic λ peak of the magnetic contribution in the specific heat curves was observed for all materials. The λ peak re-appeared in the specific heat curve after the Ni–P sample underwent a transformation to a two-phase microstructure consisting of Ni and Ni3P grains. It can be concluded that at a given P content, paramagnetic phosphorus atoms in the form of solutes are more effective in reducing the magnetic contributions to the specific heat than the form of paramagnetic Ni3P second-phase particles for the nanocrystalline Ni–P alloy.  相似文献   

19.
The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amo  相似文献   

20.
The homogeneous plastic flow of fully amorphous and partially crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory.Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystallized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号