共查询到19条相似文献,搜索用时 140 毫秒
1.
中等词汇的汉英语音翻译系统 总被引:1,自引:0,他引:1
本文给出汉英语音翻译系统的组成,介绍了系统中连续汉语语音识别和汉英机器翻译的工作;我们已经在限定主题、中等词汇量的条件下实现了非特定人的连续语音识别,实现了汉英语音翻译实验演示系统。 相似文献
2.
一、引言开发口语语音翻译(speeeh一to一Speeeh Transla-tion)系统是语音识别、机器翻译、自然语言处理、乃至整个人工智能界的终极目标之一。它通过对不同语言的话语的自动互译,使得语言不通的人们之间进行没有语言障碍的自由交流成为可能。它的实现不仅需要准确的非特定人、 相似文献
3.
译文质量的自动评价对机器翻译研究具有十分重要的意义。但现有方法主要是针对书面语翻译,没有考虑到口语翻译的特征。因此,本文提出了一种面向口语的新型的自动评价方法,通过定义信息段、标注权重和设计多种匹配策略等方法,使自动评价结果与人工打分更为接近,同时也提高了评价过程对不同输出译文的适应能力。各项实验表明,该算法对译文质量变化具有较高的敏感度,而且可以对输出译文质量作出与手工评判较为接近的评价结果。 相似文献
4.
语音翻译(SPeech Translation)技术作为一门综合性的计算机应用技术,近年来得到了广的关注。有关专家曾指出,语音翻译是自然语言处理、语音识别及其人工智能研究的最终目标一,是当今世界对计算机科学和工程最大的挑战[1],其应用效果如 相似文献
5.
语音翻译是将源语言语音翻译为目标语言文本的过程.传统序列到序列模型应用到语音翻译领域时,模型对于序列长度较为敏感,编码端特征提取和局部依赖建模压力较大.针对这一问题,本文基于Transformer网络构建语音翻译模型,使用深度卷积网络对音频频谱特征进行前编码处理,通过对音频序列进行下采样,对音频频谱中的时频信息进行局部... 相似文献
6.
基于双语对齐口语语料的翻译词典的自动生成 总被引:2,自引:0,他引:2
提出了一个基于英汉双语口语对齐语料库的翻译词典的自动生成算法,首先利用释义词典过渡双语文本,得到“过滤词典”,继而通过统计共现概率,计算出所有词对的相互关联值,并且生成“汉英(英汉)相互关联值表”,对于每个源语词汇选取相互关联值最大的若干项目标误作为候选词对,分别赋予信任值1,然后统计每个候选词对人信任值作为翻译词典的分级标准,得到4个不同级别的词典,其中“过滤词典+4级词典”在召回率为93.5%的情况下,正确率达到93.389%。 相似文献
7.
8.
申丽敏 《计算机光盘软件与应用》2015,(2):70-72
随着中西方交流日益频繁,语言的沟通就显得尤为重要。本文通过对中英语音翻译系统的三个模块"汉语语音识别模块、汉-英机器翻译模块和汉、英语语音合成模块"的分析,构建了语音翻译信号数字模型,同时通过语音识别的基本原理,提出了一种改进的语音识别DTW算法。通过仿真和实验证明了改进的语音识别DTW算法是可行的。 相似文献
9.
古文翻译系统的设计与实现 总被引:1,自引:0,他引:1
古文翻译对研究古代历史文化、继承前人成果等有重要的意义。该文结合机器翻译研究方法和技术,设计实现了一个古文自动翻译系统,能够实现部分古文献的翻译和标注。 相似文献
10.
11.
口语对话系统一直是计算机科学领域人类语言技术的热点,能够应用于不同的领域并且具备广阔的前景。将分析国外不同领域的三种典型会话系统:CommandTalk、ITSPOKE 和NICE。将从使用范围与交互方式、语音识别、对话管理、语音合成等几方面分析和研究这三种来自不同领域的对话系统,并提出观点和见解,为国内的口语对话系统研究和开发提供一定的参考和建议。 相似文献
12.
This paper argues that the time is now right to field practical Spoken Language Translation (SLT) systems. Several sorts of practical systems can be built over the next few years if system builders recognize that, at the present state of the art, users must cooperate and compromise with the programs. Further, SLT systems can be arranged on a scale, in terms of the degree of cooperation or compromise they require from users. In general, the broader the intended linguistic or topical coverage of a system, the more user cooperation or compromise it will presently require. The paper briefly discusses the component technologies of SLT systems as they relate to user cooperation and accommodation (“human factors engineering”), with examples from the authors’ work. It describes three classes of “cooperative” SLT systems which could be put into practical use during the next few years.All trademarks are hereby acknowledged. All URLs last accessed between 6th and 25th January 2006. 相似文献
13.
The problem of machine translation can be viewed as consisting of twosubproblems (a) lexical selection and (b) lexical reordering. In thispaper, we propose stochastic finite-state models for these two subproblems. Stochastic finite-state models are efficiently learnablefrom data, effective for decoding and are associated with a calculusfor composing models which allows for tight integration of constraintsfrom various levels of language processing. We present a method forlearning stochastic finite-state models for lexical selection andlexical reordering that are trained automatically from pairs of sourceand target utterances. We use this method to develop models forEnglish–Japanese and English–SPANISH translation and present the performance of these models for translation on speech and text. We also evaluate the efficacy of such a translation model in the context of a call routing task of unconstrained speech utterances. 相似文献
14.
基于短语的统计翻译模型是目前机器翻译领域广泛使用的模型之一。但是,由于在解码时采用短语精确匹配的策略,造成了严重的数据稀疏问题,短语表中的大量短语无法得到充分利用。为此,该文提出了人机互助的交互式翻译方法。对于翻译短语表中找不到的短语,首先通过模糊匹配的方法,在短语表中寻找与其相似的短语。然后利用组合分类器,判断哪些相似短语可能提高句子的翻译质量。最后,通过人机交互的方法,选择可能提高翻译质量且保持原句语义的短语。在口语语料上的实验结果证明,这种方法可以有效地提高翻译系统的译文质量。 相似文献
15.
Juan Carlos Amengual Asunción Castaño Antonio Castellanos Victor M. Jiménez David Llorens Andrés Marzal Federico Prat Juan Miguel Vilar José Miguel Benedi Francisco Casacuberta Moisés Pastor Enrique Vidal 《Machine Translation》2000,15(1-2):75-103
The EuTransAll project aims at using example-based approaches for the automatic development of Machine Translation systems accepting text and speech input for limited-domain applications. During the first phase of the project, a speech-translation system that is based on the use of automatically learned subsequential transducers has been built. This paper contains a detailed and mostly self-contained overview of the transducer-learning algorithms and system architecture, along with a new approach for using categories representing words or short phrases in both input and output languages. Experimental results using this approach are reported for a task involving the recognition and translation of sentences in the hotel-receptioncommunication domain, with a vocabulary of 683 words in Spanish. Atranslation word-error rate of 1.97% is achieved in real-timefactor 2.7 on a Personal Computer. 相似文献
16.
With increasing globalization, communication across language and cultural boundaries is becoming an essential requirement
of doing business, delivering education, and providing public services. Due to the considerable cost of human translation
services, only a small fraction of text documents and an even smaller percentage of spoken encounters, such as international
meetings and conferences, are translated, with most resorting to the use of a common language (e.g. English) or not taking
place at all. Technology may provide a potentially revolutionary way out if real-time, domain-independent, simultaneous speech
translation can be realized. In this paper, we present a simultaneous speech translation system based on statistical recognition
and translation technology. We discuss the technology, various system improvements and propose mechanisms for user-friendly
delivery of the result. Over extensive component and end-to-end system evaluations and comparisons with human translation
performance, we conclude that machines can already deliver comprehensible simultaneous translation output. Moreover, while
machine performance is affected by recognition errors (and thus can be improved), human performance is limited by the cognitive
challenge of performing the task in real time. 相似文献
17.
Dominique Estival 《International Journal of Speech Technology》2002,5(1):85-96
This paper describes the Syrinx Spoken Language System (Sylan), an automated dialogue system that is fully integrated with the Syrinx Large Vocabulary Speech Recogniser (Sycon) into the Syrinx SpeechMaster platform. This platform combines speech recognition, natural language processing, dialogue management, telephony and database integration into a robust and flexible Voice User Interface that permits the deployment of natural language dialogue systems in automated call centres. We first describe the architecture of Sylan which, being modular, allows us to build a system whose domain-independent components are reusable from application to application. We then present those components from the point of view of application developers, describing the data structures used by the system and the utilities to build them. The two prototypes that have already been developed using Sylan are briefly presented, and we conclude by drawing the lessons learned along the way and pointing to further research directions. 相似文献
18.
近年来,随着人工智能的发展与智能设备的普及,人机智能对话技术得到了广泛的关注。口语语义理解是口语对话系统中的一项重要任务,而口语意图检测是口语语义理解中的关键环节。由于多轮对话中存在语义缺失、框架表示以及意图转换等复杂的语言现象,因此面向多轮对话的意图检测任务十分具有挑战性。为了解决上述难题,文中提出了基于门控机制的信息共享网络,充分利用了多轮对话中的上下文信息来提升检测性能。具体而言,首先结合字音特征构建当前轮文本和上下文文本的初始表示,以减小语音识别错误对语义表示的影响;其次,使用基于层级化注意力机制的语义编码器得到当前轮和上下文文本的深层语义表示,包含由字到句再到多轮文本的多级语义信息;最后,通过在多任务学习框架中引入门控机制来构建基于门控机制的信息共享网络,使用上下文语义信息辅助当前轮文本的意图检测。实验结果表明,所提方法能够高效地利用上下文信息来提升口语意图检测效果,在全国知识图谱与语义计算大会(CCKS2018)技术评测任务2的数据集上达到了88.1%的准确率(Acc值)和88.0%的综合正确率(F1值),相比于已有的方法显著提升了性能。 相似文献