首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

2.
Polycrystalline In2O3 ceramics co-doped with Zn and Nd were prepared by the spark plasma sintering (SPS) process, and microstructure and thermoelectric (TE) transport properties of the ceramics were investigated. Our results indicate that co-doping with Zn2+ and Nd3+ shows a remarkable effect on the transport properties of In2O3-based ceramics. Large electrical conductivity (~130 S cm−1) and thermopower (~220 μV K−1) can be observed in these In2O3-based ceramic samples. The maximum power factor (PF) reaches 5.3 × 10−4 W m−1 K−2 at 973 K in the In1.92Nd0.04Zn0.04O3 sample, with a highest ZT of ~0.25.  相似文献   

3.
Ternary rare-earth sulfides NdGd1+x S3, where 0 ≤ x ≤ 0.08, were prepared by sulfurizing Ln2O3 (Ln = Nd, Gd) with CS2 gas, followed by reaction sintering. The sintered samples have full density and homogeneous compositions. The Seebeck coefficient, electrical resistivity, and thermal conductivity were measured over the temperature range of 300 K to 950 K. All the sintered samples exhibit a negative Seebeck coefficient. The magnitude of the Seebeck coefficient and the electrical resistivity decrease systematically with increasing Gd content. The thermal conductivity of all the sintered samples is less than 1.9 W K−1 m−1. The highest figure of merit ZT of 0.51 was found in NdGd1.02S3 at 950 K.  相似文献   

4.
We have performed a detailed study of the electrical and thermal conductivities and thermoelectric power behavior of an antiferromagnetic-layer compound of chromium, CuCrS2, from 15 K to 300 K. Unlike previous studies, we find noninsulating properties and sensitive dependence on the preparation method, the microstructure, and the flaky texture formed in polycrystalline samples after extended sintering at high temperatures. Flakes are found to be metallic, with strong localization effects in the conductivity on cooling to low temperatures. The antiferromagnetic transition temperature T N (=40 K) remains essentially unaffected. The Seebeck coefficient is found to be in the range of 150 μV/K to 450 μV/K, which is exceptionally large, and becomes temperature independent at high temperatures, even for specimens with low resistivity values of 5 mΩ cm to 200 mΩ cm. We find the thermal conductivity κ to be low, viz. 5 mW/K cm to 30 mW/K cm. This can be attributed mostly to the dominance of lattice conduction over electronic conduction. The value of κ is further reduced by disorder in Cu occupancy in the quenched phase. We also observe an unusually strong dip in κ at T N, which is probably due to strong magnetocrystalline coupling in these compounds. Finally we discuss the properties of CuCrS2 as a heavily doped Kondo-like insulator in its paramagnetic phase. The combination of the electronic properties observed in CuCrS2 makes it a potential candidate for various thermoelectric applications.  相似文献   

5.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

6.
The thermoelectric properties of cobalt-doped compounds Co x Ti1−x S2 (0 ≤ x ≤ 0.3) prepared by solid-state reaction were investigated from 5 K to 310 K. It was found that the electric resistivity ρ and absolute thermopower |S| for all the doped compounds decreased significantly with increasing Co content over the whole temperature range investigated. The increased lattice thermal conductivity of the doped compounds would imply enhancement of the acoustic velocity. Moreover, the ZT value of the doped compounds was improved over the whole temperature range investigated, and specifically reached 0.03 at 310 K for Co0.3Ti0.7S2, being about 66% larger than that of TiS2.  相似文献   

7.
Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.  相似文献   

8.
In this paper, a novel and simple sodium alginate (SA) gel method was developed to prepare γ-Na x Co2O4. This method involved the chemical gelling of SA in the presence of Co2+ ions by cross-linking. After calcining at 700°C to 800°C, single-phase γ-Na x Co2O4 crystals were obtained. The arrangement of about 1 μm to 4 μm flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. SA not only acted as the control agent for crystal growth, but also provided a Na source for the γ-Na x Co2O4 crystals. The electrical properties of γ-Na x Co2O4 ceramics prepared via ordinary sintering after cold isostatic pressing were investigated. The Seebeck coefficient and power factor of the bulk material were 177 μV K−1 and 4.3 × 10−4 W m−1 K−2 at 850 K, respectively.  相似文献   

9.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

10.
Zintl phases are currently receiving great attention for their thermoelectric potential typified by the discovery of a high ZT value in Yb14MnSb11-based compounds. Herein, we report on the crystallographic characterization via neutron and x-ray diffraction experiments, and on the thermoelectric properties measured in the 300 K to 1000 K temperature range, of Mo3Sb7 and its isostructural compounds Mo3−x Ru x Sb7. Even though Mo3Sb7 displays rather high ZT values given its metallic character, the partial substitution of Mo by Ru substantially improves its thermoelectric properties, resulting in a ZT value of ∼0.45 at 1000 K for x = 0.8.  相似文献   

11.
The performance of a microcombustor thermoelectric generator device based on a thermopile using p-type Bi0.3Sb1.7Te3 (BST) and n-type Pt films has been investigated. The BST films were prepared by two different methods—pulsed laser deposition (PLD) and sputter deposition—on Si3N4/SiO2 multilayers on Si substrate. The ceramic catalyst combustor was patterned on the thermopile end on a thin membrane fabricated by back-side bulk etching of the silicon substrate. At 138°C the thermoelectric power factors of the PLD and sputter-deposited films were 3.6 × 10−3 W/mK2 and 0.22 × 10−3 W/mK2, respectively. The power from the generator with the sputter-deposited film was 0.343 μW, which was superior to that of the device with the PLD film, which provided 0.1 μW, for combustion of a 200 sccm flow of 3 v/v% hydrogen in air.  相似文献   

12.
Bismuth sulfide (Bi2S3) polycrystalline samples were fabricated by mechanical alloying (MA) combined with spark plasma sintering (SPS). The microstructure and electrical transport properties were investigated with special emphasis on the influence of the ball-milling process. Bi2S3 compound powders could be readily synthesized directly from elemental powders under all the investigated conditions, and highly dense n-type bulk Bi2S3 samples with high density (>95%) were fabricated by the subsequent SPS process. Changing the MA conditions had no apparent influence on the microstructure or phase structure of the MA-derived Bi2S3 powders, but the electrical properties and thermopower of the SPS-sintered Bi2S3 bulk samples were greatly dependent on the MA speed and time. The power factor of Bi2S3 was increased to 233 μW K−2 m−1 at 573 K by optimizing the ball-milling process. This power factor is higher than values reported to date for Bi-S binary samples without texture.  相似文献   

13.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

14.
The thermoelectric properties of Y-doped (1000 ppm, 2000 ppm, 3000 ppm) Mg2Si fabricated using field-activated pressure-assisted synthesis (FAPAS) have been characterized using measurements of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) at temperatures ranging from 285 K to 810 K. The Y-doped Mg2Si samples were n-type in the measured temperature range. A first-principles calculation revealed that the Y atoms were expected to be primarily located at Mg sites. In sample doped with 2000 ppm Y, which exhibited the best electrical and thermal conductivity, the absolute value of the Seebeck coefficient increased in the temperature range of 320 K to 680 K, being higher than that of undoped Mg2Si. Moreover, this sample exhibited a higher level of electrical conductivity and a higher power factor. In addition, introduction of Y decreased the thermal conductivity appreciably, indicating that Y dopants are favorable for improving the properties of Mg2Si.  相似文献   

15.
We have prepared the CuFe1−x Mn x O2 solid solution to enhance the thermoelectric performance of CuFeO2 by reducing its thermal conductivity κ. With increasing x above 0.4, the crystal structure changes from delafossite ( R[`3] m ) \left( {R\overline{3} m} \right) to crednerite (C2/m). CuFe0.5Mn0.5O2 exhibits the lowest κ value of 2.28 W/m K at the theoretical density, being about one-quarter of that of the end members, CuFeO2 and CuMnO2. We discuss the temperature dependence of κ in terms of a classical phonon transport model, and conclude that local structural modulation due to the mixture of undistorted FeO6 octahedra and distorted MnO6 octahedra in CuFe1−x Mn x O2 leads to the significant reduction of κ.  相似文献   

16.
This study focuses on Sb-doped Mg2(Si,Sn) thermoelectric material. Samples were successfully fabricated using a hybrid synthesis method consisting of three different processes: induction melting, solid-state reaction, and a hot-press sintering technique. We found that the carrier concentration increased with Sb content, while the Seebeck coefficient exhibited a decreasing trend. Sb doping was shown to improve the power factor and thermoelectric figure of merit compared with the undoped material, yielding a peak figure of merit (ZT) of ~0.55 at 620 K, while leaving the band gap of Mg2Si0.7Sn0.3 almost unchanged.  相似文献   

17.
A ternary ordered variant of the skutterudite structure, the Co4Sn6Se6 compound, was prepared. Polycrystalline samples were prepared by a modified ceramic method. The electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured over a temperature range of 300–800 K. The undoped Co4Sn6Se6 compound was of p-type electrical conductivity and had a band gap E g of approximately 0.6 eV. The influence of transition metal (Ni and Ru) doping on the thermoelectric properties was studied. While the thermal conductivity was significantly lowered both for the undoped Co4Sn6Se6 compound and for the doped compounds, as compared with the Co4Sb12 binary skutterudite, the calculated ZT values were improved only slightly.  相似文献   

18.
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.  相似文献   

19.
In major applications, optimal power will be achieved when thermoelectric films are at least 100 μm thick. In this paper we demonstrate that screen-printing is an ideal method to deposit around 100 μm of (Bi,Sb)2(Te,Se)3-based films on a rigid or flexible substrate with high Seebeck coefficient value (90 μV K−1 to 160 μV K−1) using a low-temperature process. Conductive films have been obtained after laser annealing and led to acceptable thermoelectric performance with a power factor of 0.06 μW K−2 cm−1. While these initial material properties are not at the level of bulk materials, the complete manufacturing process is cost-effective, compatible with large surfaces, and affords a mass-production technique.  相似文献   

20.
The thermoelectric half-Heusler compound Ti0.5(Hf0.5Zr0.5)0.5NiSn0.998Sb0.002 was fabricated by spin-casting and subsequent annealing. ZT at room temperature increased with annealing time through an increase in absolute Seebeck coefficients despite a decrease in electrical conductivity. ZT reached 0.10 after annealing at 1050 K for 48 h. In powder x-ray diffraction analysis, each half-Heusler peak was accompanied by a bump at the high-angle side, corresponding to a minor Ti-rich half-Heusler phase. The quantity and Ti composition of the minor phase increased with annealing time, although those of the major half-Heusler phase were almost constant. In transmission electron microscopic analysis, granular domains, several nanometers in size, with atomic ordering or disordering were observed. Thermoelectric properties were␣improved by annealing through the growth of heterogeneous microstructures of the Ti-rich and Ti-poor half-Heusler grains and of the granular domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号