首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report a study of angular magnetic properties of high-anisotropy L10 CoPt (111) films having a tilted magnetic easy axis configuration without an oblique-grain microstructure. In particular, we investigated the field dependence of remanent magnetization while rotating the magnetic field inside three intersecting planes. The out-of-plane tilting of the L10 c-axis (the easy axis of the tetragonal cell) was induced by using a Pt (111) underlayer deposited onto a single-crystal MgO substrate in a conventional frontal pulsed laser deposition (PLD). The observed behavior is consistent with the presence of four easy axes with mutually orthogonal in-plane projections, symmetrically tilted at 36deg with respect to the film plane. Such a system can be used, like a common single-axis tilted medium, to record information in perpendicular mode, lowering the writing field to approximately 75% of the value along the easy direction, while still maintaining the high thermal stability typical of the L10 alloy. Moreover, the in-plane charge compensation arising from this easy axis arrangement when a perpendicular writing field is applied may favor a media noise reduction and better performance with respect to a single-axis tilted system.  相似文献   

2.
The mechanically alloyed (Al + 12.5 at.% Cu)3Zr powders were consolidated by cold isostatic pressing (CIP) and subsequent sintering. Effects of CIP pressure and sintering temperature on the stability of metastable L12 phase and nanocrystalline structure were investigated. Before sintering, the powders were CIPed at 138, 207, 276, and 414 MPa. The relative densities of the CIP compacts were not greatly affected by the CIP pressure. However, the L12 phase of the specimen CIPed at pressures greater than 276 MPa was partially transformed into D023. The optimum consolidation conditions for maintaining L12 phase and nanocrystalline microstructure were determined to be CIP at 207 MPa and sintering at 800 °C for 1 h for which the grain size was 34.2 nm and the relative density was 93.8%. Full density specimens could be prepared by sintering above 900 °C, however, these specimens consisted of L12 and D023 phases. The grain sizes of all the specimens were confirmed by TEM and XRD, and were found to be less than 40 nm. This is one of the smallest grain sizes ever reported in trialuminide intermetallic compounds.  相似文献   

3.
The structure and magnetic properties of Sm3(Fe1-x Cox)27.7Ti1.3 compounds, with x ranging from 0 to 0.4, have been investigated by means of X-ray powder diffraction and magnetic measurements. The main phase formed was that of Nd3(Fe, Ti)29-type structure (3:29) with a relatively small amount of the ThMn12-type structure (1:12) as a secondary phase (7-13 wt.%). The lattice parameters and the unit-cell volume decrease with increasing Co content x. It is found that substitution of Co for Fe leads to a significant increase in the Curie temperature from 488 K for x=0 to 941 K for x=0.4. Saturation magnetization gradually increases with increasing Co. All compounds show easy cone-type anisotropy  相似文献   

4.
Epitaxial (111)-oriented C60 films have been grown on alkali–halide substrates, KCl (100), KBr (100) and NaCl (100) by a three-step process: (1), substrate surface cleaning by high temperature heating; (2), initial deposition with a low deposition rate to grow two or three monolayers (ML); and (3), deposition with a high deposition rate to grow a film with expected thickness. It was found that (111)-oriented epitaxial C60 films could be grown at low temperatures in a wide temperature range, from 40 to 120°C. By this three-step process, we can also grow epitaxial C60 films at deposition rates as high as 35 Å/min.  相似文献   

5.
We confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n and Au spacer on Au electrode by RHEED and TEM. A considerably large DeltaRA (2.61 mOmegamum2) resistance area product was observed in all metallic current perpendicular-to-plane giant magneto-resistance (CPP-GMR) spin-valve elements by using alternate monatomic epitaxial [Fe/Co]n ferromagnetic layer with IrMn layer on the top. The estimated spin scattering asymmetry coefficient beta and interface asymmetry coefficient gamma was 0.81 and 0.43 plusmn 0.05, respectively. This value of beta is higher than that of Fe50Co50/Cu laminated with Cu spacer or Heusler alloy which is largest value ever reported at room temperature.  相似文献   

6.
Chemical vapor co-deposition of Cu–Co films has been demonstrated using (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)Cu(II) [Cu(hfac)2] [hfac=hexafluoroacetylacetonate] and (acetylacetonate)Co(II) [Co(acac)2] [acac=acetylacetonate] as precursors. The deposition was performed at the substrate temperature of 270°C in a warm-wall impinging jet type reactor. The precursor Co(acac)2 was sublimed at 140°C to achieve reasonable precursor delivery rates and avoid decomposition of precursor in the sublimator. Films with varying Cu content from 17 wt.% to 98 wt.% were deposited by subliming Cu(hfac)2 in the temperature range of 40–100°C with a fixed Co(acac)2 delivery rate. The morphologies and crystallinities of the binary films were strongly dependent on the film stoichiometry. Overall, this study provides insights into the mechanism of Cu–Co binary film formation by CVD.  相似文献   

7.
In this investigation, we have fabricated Ta(Vb)/Si(111) and Cu/Ta(Vb)/Si(111) systems using a DC bias sputtering technique at high Ar pressure (100 mTorr). For Ta/Si(111) system, tantalum layer was formed under various bias voltages ranging from 0 to −150 V. The films were characterized by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and four-point probe sheet resistance measurements (Rs). From electrical resistivity and SEM data, a minimum resistivity (99 μΩ cm) and well surface morphology at an optimum bias voltage (Vb=−50 V) was obtained for the Ta(Vb)/Si(111) system. The Ta films deposited under these conditions with 50 nm thickness are then used as a diffusion barrier in the Cu/Ta(Vb)/Si(111) multilayer structure. According to our RBS, SEM and Rs analysis, the Ta barrier layer formed under the controlled bias sputtering at high Ar pressure has demonstrated an improved Ta structure with excellent thermal stability up to 650°C for the Cu/Ta(Vb)/Si(111) system annealed in N2 environment for 30 min. Formation of TaSi2 was observed at 700°C after the barrier failure using RBS spectra.  相似文献   

8.
Fracture behavior of cross-ply (0/90)4s, (0/90)10s, (02/902)2s and (04/908/04)T laminates of T300/934 graphite/epoxy material was studied using compact tension specimens of several widths and thicknesses, center notched tension and three point bend specimens. The process of damage initiation and propagation was studied and is discussed in detail. The critical stress intensity factor was evaluated and its variation with specimen size and type is shown. On the basis of these investigations, a suitable specimen for the evaluation of meaningful fracture toughness is suggested.  相似文献   

9.
In high fields where the magnetization is approaching saturation, the resolved magnetic polarization I can be expressed by a power series of the inverse of external field H as: I=Is-b/H 2-c/H3 . . ., or alternatively in terms of the reversible permeability μrev=1+(2b/H3+3c/H4+ . . .)/μ0 where Is is the spontaneous magnetic polarization and b, c, are constants. These equations express the law of approach to saturation magnetization. The coefficient b for a cubic crystal has been deduced as b=0.0762/Is[K+1.5(λ100111)σ]2, where σ is the applied stress and others are magnetic constants. The values of reversible permeability μrev under biasing field H were measured for carbon steels with applied stresses. The results showed that the square root of 2b changed linearly with the applied stress, The values of magnetic constant K andλ100111 were calculated, They agreed with the standard values, but were affected by chemical composition and heat treatment of materials, especially in λ100111  相似文献   

10.
The effects of partial substitution of light rare earths for Sm in (Sm1-xRx)2 (Co,Fe,Cu,Zr)17 have been investigated where R=Ce, Pr, Nd, Pr0.5Nd 0.5, Ce0.2Pr0.4Nd0.4 and x=0-0.5. Experiments show that both remanence and maximum energy product are improved for x=0.1-0.2, depending upon compositions and heat treatments. For a composition Sm0.8R0.2(Co0.633Fe0.286 Cu0.061Zr0.020)7.59 with R =Ce0.2Pr0.4Nd0.4, the authors obtained Br=11.57 kG, MHc =15.5 kOe, BHc=10.33 kOe, Hk=10.03 kOe, and (BH)max=30 MGOe  相似文献   

11.
借鉴自支撑电极的制备原理,利用电化学沉积结合(NH4)2S2O8和NaOH沉积液进行表面处理等手段制备了基于碳纤维表面Cu(OH)2纳米结构的自支撑电极,分析测试了碳纤维表面的微观形貌、表面元素组成及其分布和表面物质的晶型以及利用水热反应在其表面附着电化学物质MnO2后的电化学性能。结果发现,当(NH4)2S2O8的浓度为0.43 g/L、NaOH浓度为30.48 g/L、处理时间为12 min时,由SEM观察发现碳纤维表面的Cu(OH)2纳米纤维的直径、长度、数量都较适宜;XPS、XRD和EDS的测试结果,沉积液处理后碳纤维表面部分单质铜转化为Cu(OH)2,此结构非常有利于电化学物质的负载而由此构成开放、具有核壳结构的高性能电极材料;恒电流充放电(GCD)测试结果表明此电极材料具有极快的充放电速度。因此本文首次成功地在碳纤维表面的铜层表面原位生长出Cu(OH)2纳米纤维,为未来以超级电容器为代表的能源设备的性能提升和商业化应用开拓了一种新的电极制备方法。   相似文献   

12.
The reactions of Ti and Zr with A1N, Al203and mullite were studied. The substrates were selected to represent a simple nitride (A1N), a simple oxide (Al2O3), and a complex oxide (mullite). The activities of the Ti and Zr were varied by dissolving them at 1 and 5 wt% in the 72Ag-28Cu eutectic composition, which is otherwise unreactive with the ceramics. Reactions were studied by measuring the variation of the alloy contact angle on the ceramic with time at temperature and by determining the compositions of interfacial reaction products. The reaction products were determined by SEM-liDS, EPMA and XRD analysis. Contact angles were lower for Ti alloys than for those containing Zr. Reaction products were primarily the nitrides of Zr and Ti for reaction with A1N and the respective oxides for reaction with A1203. Complex alloy phases were found in the metal away from the ceramic-metal reaction zone.  相似文献   

13.
We studied the magnetic and magnetoresistance characteristics of pseudospin-valve magnetic tunnel junctions (MTJs) based on CoFe/Pd multilayer electrodes with perpendicular magnetic anisotropy and an MgO barrier. The MTJs at annealing temperature (T a) of 473 K showed a tunnel-magnetoresistance (TMR) ratio of 1.5%. An fcc (111)-oriented texture of the bottom and top Co90Fe10/Pd multilayer electrodes, together with an imperfectly crystallized MgO, were revealed by cross-sectional TEM images. The TMR properties of perpendicular MTJs with a Co20Fe60B20 or Co50Fe50 layer inserted between the CoFe/Pd multilayer electrodes and the MgO barrier were also studied. The TMR ratio with Co20Fe60B20 insertion was 1.7% at T a= 473 K and monotonically decreased at T a over 523 K. The TMR ratio with Co50Fe50 insertion increased up to 3% at T a= 573 K and then decreased to 0.4% at T a= 598 K. The influence of the Pd layer on CoFeB was studied by using the simplified structures of Pd/CoFeB/MgO/CoFeB/Pd and Ta/CoFeB/MgO/CoFeB/Ta with inplane anisotropy. A former structure with Pd resulted in reduced TMR ratio which decreases with increasing T a, whereas MTJs with a Ta-based structure showed a monotonic increase of a TMR ratio. The low TMR ratio observed in Pd-containing structures appears to result from crystallization of CoFeB in an unfavorable crystal orientation.  相似文献   

14.
High-quality LB multilayers have been prepared from the Lu(III) sandwich complex of 2,3,9,10,16,17,23,24-octa (n-butoxy)phthalocyanine (LuPc2(OBu)16). Surface pressure-area isotherms were characterized and indicate that a stable monolayer is formed corresponding to an area per molecule of 2.4 nm2 at 30 mN m−1. The LB films were highly birefringent, and polarized spectra gave dichroic ratios of 3.3 for the 670 nm absorption band and between 0.5 and 2.8 for infrared absorptions. The results indicate that the phthalocyanine rings were highly oriented perpendicular to the dipping direction but somewhat tilted from the substrate normal. The order was shown to be absent when (i) unsubstituted LuPc2 was used for LB films, or (ii) the horizontal lifting method of film deposition was used, or (iii) the surface pressure was increased to 50 mN m−1, causing a molecular rearrangement. The ordering was improved at 100 °C and finally lost at 280 °C by annealing on a hot stage. The d.c. electrical conductivity of LB films of LuPc2(OBu)16 was low (σ ≈ 2 × 10−7 Ω−1 m−1), in contrast with unsubstituted LuPc2 (σ ≈ 10−1 Ω−1 m−1) and showed no evidence for anisotropy. The findings are in broad agreement with related studies and illustrate some of the many factors involved in improving the structure of phthalocyanine LB films for possible applications.  相似文献   

15.
Sol-gel Pb(Zr0.56Ti0.44)0.90(Mg1/3Nb2/3)0.10O3 (PZT-PMN) films were prepared onto the Ti/Pt/Ti bottom electrode by multilayer spin coating. The film thickness ranged from 0.22 to 0.88 μm. The Pt top electrodes were deposited on the PZT-PMN films by DC sputtering. The structural and ferroelectric properties of PZT-PMN films were investigated as a function of film thickness by X-ray diffraction (XRD), scanning electron microscopy (SEM), cross-sectional transmission electron microscopy (XTEM), and by measuring the relative permittivity. The film retains the tetragonal perovskite structure with the [111] and [100] preferred orientations perpendicular to the film surface independent of film thickness. The [100] texture increases with increasing film thickness although the [111] texture is always predominant. The film consists of columnar grains. The average grain size is nearly independent of film thickness. The surface layer containing fine grains about 30 nm in diameter is induced on the top of the film. As the film thickness exceeds 0.44 μm, the number of the fine grains decreases remarkably. The crystalline interface layer about 10 nm thick is formed between the film and the bottom electrode. This interface layer is composed of Pt, Pb, Zr, Ti and O, while it is rich in Ti and deficient in Pb and O as compared with the inside of the film. The measured relative permittivity of the film increases with increasing film thickness, following the low permittivity interface model. On the basis of this model, the relative permittivity is estimated to be 3200 for the intrinsic PZT-PMN film, 750 for the surface layer and 50 for the interface layer.  相似文献   

16.
Electron microscopic studies of as-cast Sm(Co,Fe,Cu,Zr)9 magnets revealed a hexagonal phase of the type Sm2(Co,Fe,Cu,Zr)17 with crystal lattice parameters of a=0.84 nm and c=3.2 nm. After a solid solution treatment, only rhombohedral (3R) and hexagonal (2H) grains were found. After an additional annealing treatment at 800°C, grains with a microcellular precipitation structure similar to the one found in Sm(Co,Fe,Cu,Zr)7.5 magnets occurred. In addition, in the as-cast and after-aged samples, other, partly unidentified Cu- or (Co,Fe)-enriched phases were detected  相似文献   

17.
Lead-free piezoelectric ceramics with compositions around the morphotropic phase boundary (MPB) x(Na0.5Bi0.5)TiO 3-y(K0.5Bi0.5)TiO3-zBaTiO 3 [x + y + z = 1; y:z = 2:1] were synthesized using conventional, solid-state processing. Dielectric maximum temperatures of 280degC and 262degC were found for tetragonal 0.79(Na0.5Bi0.5)TiO3-0.14(K0.5 Bi0.5)TiO3-0.07BaTiO$ d3 (BNBK79) and MPB composition 0.88(Na0.5Bi0.5)TiO3-0.08(K 0.5Bi0.5)TiO3-0.04BaTiO$ d3 (BNBK88), with depolarization temperatures of 224degC and 162degC, respectively. Piezoelectric coefficients d33 were found to be 135 pC/N and 170 pC/N for BNBK79 and BNBK88, and the piezoelectric d31 was determined to be -37 pC/N and -51 pC/N, demonstrating strong anisotropy. Coercive field values were found to be 37 kV/cm and 29 kV/cm for BNBK79 and BNBK88, respectively. The remanent polarization of BNBK88 (~40 muC/cm2) was larger than that of BNBK79 (~29 muC/cm2). The piezoelectric, electromechanical, and high-field strain behaviors also were studied as a function of temperature and discussed  相似文献   

18.
Thin films of CuInSe2 were deposited onto {111}-oriented germanium substrates by flash evaporation and were investigated by reflection high energy electron diffraction. Epitaxial growth was found in the substrate temperature range 720–820 K. In all cases the epitaxial layers had the chalcopyrite structure except at growth temperatures higher than 795 K where the layers were cubic. Deposition of CuInSe2 onto {111}-oriented germanium is characterized by one-dimensional epitaxy, and the epitaxial relationship for the chalcopyrite phase is given by {111}Ge{112}CuInSe2  相似文献   

19.
Thirty to a hundred-nm thick epitaxial CeO2 layers are grown on YSZ (100), (110) and (111) surfaces of yttria-stabilized ZrO2 (YSZ) by electron beam evaporation of Ce in oxygen at reduced pressure. Their growth, structure and thermal stability are studied with several bulk and surface sensitive techniques including Rutherford backscattering spectrometry, cross-sectional high resolution electron microscopy, low energy electron diffraction and low energy reflection electron microscopy. Excellent epitaxy is obtained on all YSZ surfaces at a growth temperature of 750 K. The surfaces of films grown on (111)-oriented substrates are flat, whereas those on the other substrates are faceted into small (111) planes. The grain sizes in the films are in the 10 nm range and smaller.  相似文献   

20.
We fabricated SmCo5 double-layered perpendicular magnetic recording media with high perpendicular magnetic anisotropy for realizing ultra high density recording. A double-layered medium with a Ru buffer layer introduced between a Cu/Ti intermediate layer and a Co-Zr-Nb soft magnetic underlayer exhibited high perpendicular magnetic anisotropy, whereas that without the Ru buffer layer did not. Auger electron spectroscopy revealed that the Ru buffer layer inhibited interdiffusion between the Cu/Ti intermediate layer and the Co-Zr-Nb soft magnetic underlayer. We report here for the first time the read-write characteristics of SmCo5 double-layered perpendicular magnetic recording media. The medium noise was small in the medium with a Sm-Co layer deposited under high Ar gas pressure owing to small magnetic clusters  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号