首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methane steam reforming in a Pd-Ru membrane reactor   总被引:2,自引:0,他引:2  
Methane steam reforming has been carried out in a Pd-Ru membrane reactor at 500–600 ‡C. The membrane reactor consisted of a Pd-6%Ru tube of 100 mm wall thickness and commercial catalysts packed outside of the membrane. The methane conversion was significantly enhanced in the membrane reactor in which reaction equilibrium was shifted by selective permeation of hydrogen through the membrane. The methane conversion at 500 ‡C was improved as high as 80% in the membrane reactor, while equilibrium conversion in a fixed-bed reactor was 57%. The effect of gas flow rate and temperature on the performance of the membrane reactor was investigated and the results were compared with the simulated result from the model. The model prediction is in good agreement with the experimental result. In order to apply the membrane in practice, however, the thickness of the membrane has to be reduced. Therefore, the effect of membrane thickness on performance of the membrane reactor was estimated using the model.  相似文献   

2.
This paper focuses on an experimental study of the methanol steam reforming (MSR) reaction. A dense Pd/Ag membrane reactor (MR) has been used, and its behaviour has been compared to the performance of a traditional reactor (TR) packed with the same catalyst type and amount. The parameters investigated are reaction time, temperature, feed ratio and sweep gas flow rate. The few papers dealing with MR applications for the MSR reaction mainly analyse the effect of temperature and pressure on the reaction system. The investigation of new parameters permitted to better understand how the fluid-dynamics of the MR influences the hydrogen separation effect on methanol conversion and product selectivity. The comparison between MR and TR in terms of methanol conversion shows that the MR gives a higher performance than the TR at each operating condition investigated. Concerning hydrogen production, the experiments have shown that the overall selectivity towards hydrogen is identical for both MR and TR. However, the MR produces a free-CO hydrogen stream, which could be useful for direct application in proton exchange membrane fuel cells. A comparison, in terms of methanol conversion versus temperature, with literature data is also included.  相似文献   

3.
An ethanol reforming membrane reactor (ERMR) with Pt-impregnated Knudsen membranes was investigated to achieve the improvement of ethanol conversion and hydrogen yield. The prepared Pt-impregnated membranes have high permeabilities and reaction activities for the water-gas shift (WGS) reaction. The ethanol reforming-membrane reactor showed ethanol conversion improvement of 7.4–14.4% in comparison with a conventional reactor (CR). Hydrogen yield improvement of 4.2–10.5% was also observed in ERMR with Pt-impregnated SKM in whole reaction temperature range. In addition, CO concentration was considerably reduced via water-gas shift reaction during the permeation.  相似文献   

4.
5.
Low temperature steam reforming of methane mainly to hydrogen and carbon dioxide (CH4 + 2H2O → 4H2 + CO2) has been performed at 773 and 823 K over a commercial nickel catalyst in an equilibrium-shift reactor with an 11-μm thick palladium membrane (Mem-L) on a stainless steel porous metal filter. The methane conversion with the reactor is significantly higher than its equilibrium value without membrane due to the equilibrium-shift combined with separation of pure hydrogen through the membrane. The methane conversion in a reactor with an 8-μm membrane (Mem-H) is similar to that with Mem-L, although the hydrogen permeance through Mem-H is almost double of that through Mem-L. The amount of hydrogen separated in the reaction with Mem-H is significantly large, showing that the hydrogen separation overwhelms the hydrogen production because of the insufficient catalytic activity.  相似文献   

6.
Thermal effects on methane steam reforming process were analyzed, in a Pd-Ag (23wt%) membrane reactor as a function of several parameters, such as temperature, reactant and sweep-gas flow rate, and reactant molar ratio. Heat transfer from the oven was very important for the outlet methane conversion, which also depends on the temperature profile along the reactor. In particular, when the reactant flow rate was high the conversion degree decreased because the energy supplied was not sufficient to maintain the temperature in the reactor. A non-isothermal mathematical model was presented which reproduced the experimental data.  相似文献   

7.
This paper presents a mathematical model based on the reaction rate expressions to describe the displacement of methane conversion in the steam reforming. The effect of several parameters including weight hourly space velocity (WHSV), load-to-surface ratio, reaction pressure, hydrogen partial pressure in permeate side and reaction temperature were investigated. Simulation and experimental results showed that a conversion higher than 80% could be achieved in a palladium membrane reactor at reaction temperature of 500 °C relative to 850 °C in a conventional fixed bed reactor (FBR). Besides, the yield of CO (<2%) in membrane reactor was much lower than that (>50%) in the FBR, which indicated the significant depression of CO production in use of membrane reactor.  相似文献   

8.
A theoretical study of methane steam reforming coupled with methane catalytic combustion in a catalytic plate reactor (CPR) based on a two-dimensional model is presented. Plates with coated catalyst layers of order of micrometers at distances of order of millimetres offer a high degree of compactness and minimise heat and mass transport resistances. Choosing similar operating conditions in terms of inlet composition and temperature as in industrial reformer allows a direct comparison of CPRs with the latter. It is shown that short distance between heat source and heat sink increases the efficiency of heat exchange. Transverse temperature gradients do not exceed across the wall and across the gas-phase, in contrast to difference in temperature of outside wall and mean gas phase temperature inside the tube usually observed in conventional reformers. The effectiveness factors for the reforming chemical reactions are about one order of magnitude higher than in conventional processes. Minimisation of heat and mass transfer resistances results in reduction of reactor volume and catalyst weight by two orders of magnitude as compared to industrial reformer. Alteration of distance between plates in the range 1- does not result in significant difference in reactor performance, if made at constant inlet flowrates. However, if such modifications are made at constant inlet velocities, conversion and temperature profiles are considerably affected. Similar effects are observed when catalyst layer thicknesses are increased.  相似文献   

9.
The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate in counter-current mode was used in MR and the experiments were carried out by varying the water/methanol feed molar ratio in the range 3/1–9/1 and the reaction temperature in the range 250–300 °C. The catalyst shows high activity and selectivity towards the CO2 and the H2 formation in the temperature range investigated. Under the same operative conditions, the MR shows higher conversions than FBR and, in particular, at 300 °C and H2O/CH3OH molar ratio higher than 5/1 the MR shows complete methanol conversion.  相似文献   

10.
Synthesis gas production by steam reforming of ethanol   总被引:4,自引:0,他引:4  
A two-layer fixed-bed catalytic reactor for syngas production by steam reforming of ethanol has been proposed. In the reactor, ethanol is first converted to a mixture of methane, carbon oxides and hydrogen over a Pd-based catalyst and then this mixture is converted to syngas over a Ni-based catalyst for methane steam reforming. It has been shown that the use of the two-layer fixed-bed reactor prevents coke formation and provides the syngas yield closed to equilibrium.  相似文献   

11.
In this investigation, we studied the oxidative steam reforming reaction of ethanol in a Pd-Ag/PSS membrane reactor for the production of high purity hydrogen. Palladium and silver were deposited on porous stainless steel (PSS) tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. An ethanol-water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2, 0.7 or 1.0) were fed concurrently into the membrane reactor packed with Zn-Cu commercial catalyst (MDC-3). The reaction temperatures were set at 593-723 K and the pressures at 3-10 atm. The hydrogen flux in the permeation side increased proportionately with increasing pressure; however, it reduced slightly when increasing oxygen input. This is probably due to the fast oxidation reaction that consumes hydrogen before the onset of the steam reforming reaction. The effect of oxygen plays a vital role on the ethanol oxidation steam reforming reaction, especially for a Pd-Ag membrane reactor in which a higher flux of hydrogen is required. The selectivity of CO2 increased with increasing flow rate of oxygen, while the selectivity of CO remained almost the same.  相似文献   

12.
A generalized comprehensive model was developed to simulate a wide variety of fluidized-bed catalytic reactors. The model characterizes multiple phases and regions (low-density phase, high-density phase, staged membranes, freeboard region) and allows for a seamless introduction of features and/or simplifications depending on the system of interest. The model is implemented here for a fluidized-bed membrane reactor generating hydrogen. A concomitant experimental program was performed to collect detailed experimental data in a pilot scale prototype reactor operated under steam methane reforming (SMR) and auto-thermal reforming (ATR) conditions, without and with membranes of different areas under diverse operating conditions. The results of this program were published in Mahecha-Botero et al. [2008a. Pure hydrogen generation in a fluidized bed membrane reactor: experimental findings. Chem. Eng. Sci. 63(10), pp. 2752-2762]. The reactor model is tested in this second paper of the series by comparing its simulation predictions against axially distributed concentration in the pilot reactor. This leads to a better understanding of phenomena along the reactor including: mass transfer, distributed selective removal of species, interphase cross-flow, flow regime variations, changes in volumetric flow, feed distribution, and fluidization hydrodynamics. The model does not use any adjustable parameters giving reasonably good predictions for the system of study.  相似文献   

13.
板翅式反应器中甲醇水蒸气重整制氢   总被引:4,自引:1,他引:4       下载免费PDF全文
潘立卫  王树东 《化工学报》2005,56(3):468-473
研制了一种高效板翅式反应器,其特点是体积相对较小,便于放置,便于扩大规模;集预热、气化、重整、催化燃烧于一体;板翅式反应器内部热量利用合理,放热反应与吸热反应、气化与冷却之间实现了较好的热量耦合;可实现完全自供热.在反应器中进行了一系列甲醇水蒸气重整的实验,考察了不同条件对甲醇重整制氢过程的影响、对反应器床层温度分布的影响,及反应器的稳定性.另外,由于板翅式结构的良好传热性,甲醇水蒸气重整在获得较高转化率的同时重整气中CO浓度较低,且反应器的稳定性良好.  相似文献   

14.
Steam reforming of hydrocarbons such as natural gas is an attractive method of producing the hydrogen fuel gas required by fuel cells. It may be carried out external to the fuel cell or internally. The two types of fuel cell in which internal reforming is most appropriate are the molten carbonate (MCFC), operating at ca. 650°C and the solid oxide (SOFC) which currently operates above 800°C. At such temperatures, the heat liberated by the electrochemical reactions within the cell can be utilised by the endothermic steam reforming reaction. This paper reviews some of the catalytic aspects of internal reforming in these two types of cell. In the MCFC the major catalyst issue is that of long term activity in the presence of a corrosive alkaline environment produced by the cell's electrolyte. In Europe, this is being addressed by British Gas and others, in a programme part-funded by the European Commission. In this programme, potential catalysts for the direct internal reforming MCFC were evaluated in ‘out-of-cell’ tests. This has led to the demonstration of a 1 kW proof-of-concept DIR-MCFC stack and the start of a European ‘Advanced DIR-MCFC’ project. For the SOFC, it has been shown that state-of-the-art nickel cermet anodes can provide sufficient activity for steam reforming without the need for additional catalyst. However, anode degradation may occur when steam reforming is carried out for long periods. New anode materials could therefore offer significant benefits.  相似文献   

15.
Steam methane reforming (SMR) is a commercial process to produce syngas. Normally, the as-produced syngas is characterized by a H2/CO ratio of 3. However, such H2/CO ratio is unsuitable for Fischer–Tropsch synthesis. The hydrogen obtained by subsequent upgrading of syngas usually contains residual CO, which readily deactivates Pt electrocatalysts in fuel cells. Here we report an innovative route by coupling SMR with H2 removal in a proton conducting membrane reactor to coproduce syngas with a preferable H2/CO ratio of 2 and CO-free H2 on opposite sides of the membrane, which can be directly used for Fischer–Tropsch synthesis and fuel cells, respectively. Notably, H2 is in-situ extracted by the membrane that only allows the permeation of H2 as protons through the oxide lattice with infinite selectivity, and thus the obtained H2 is CO-free. This work could provide an alternative option in one-step conversion of methane into two inherently separated valuable chemicals.  相似文献   

16.
闫鹏  程易 《化工进展》2022,41(7):3446-3454
采用反应-分离集成的膜反应器进行分布式制氢,对简化工艺、降低能耗、提升技术经济性至关重要。本文采用数学模型对甲烷蒸汽重整制氢过程膜反应器进行模拟,系统分析了渗透侧操作策略、反应压力、反应温度、钯基膜性能、催化剂性能对反应器行为的影响;并以1m3/h甲烷最大程度转化为目标进行分布式制氢案例分析,详细比较膜反应器技术与“常规反应器+膜分离”工艺技术。结果表明,膜反应器在反应压力30atm(1atm=101325Pa)、反应温度500℃下操作可实现紧凑设计,比“常规反应器+膜分离”工艺技术具有明显优势,但是亟需研发更佳活性(10倍)的钯基膜和催化剂以实现显著的过程强化。模拟结果可为不同规模分布式制氢膜反应器的操作与设计及进一步的性能强化提供指导。  相似文献   

17.
18.
The development of a nickel composite membrane with acceptable hydrogen permselectivity at high temperature in a membrane reactor for the highly endothermic dry reforming of methane reaction was the purpose of this work. A thin, catalytically inactive nickel layer, deposited by electroless plating on asymmetric porous alumina, behaved simply as a selective hydrogen extractor, shifting the equilibrium in the direction of a higher hydrogen production and methane conversion. The main advantage of such a nickel/ceramic membrane reactor is the elimination or limitation of the side reverse water gas shift reaction. For a Ni/Al2O3 catalyst, containing free Ni particles, normally sensitive to coking, the use of the membrane reactor allowed an important reduction of carbon deposition (nanotubes) due to restriction of the Boudouard reaction. For a Ni–Co/Al2O3 catalyst, where the metallic nickel phase was stabilized by the alumina, the selective removal of the hydrogen significantly enhanced both methane conversion (+67% at 450 °C, +22% at 500 °C and +18% at 550 °C) and hydrogen production (+42% at 450 °C, +32% at 500 °C and +22% at 550 °C) compared to the results obtained for a packed-bed reactor. The hydrogen selectivity during the catalytic tests at 550 °C, maintained with constant separation factors (7 for H2/CH4, 8 for H2/CO and 10 for H2/CO2), higher than Knudsen values, attested to the high thermal stability of the nickel composite membrane.  相似文献   

19.
钯膜与水蒸汽重整反应器集成使反应与分离一体化,在降低装置投资成本和节能降耗方面具有明显优势和发展前景,受到研究者的青睐。综述了固定床和流化床钯膜反应器规模验证方面的研究进展,并指出钯膜反应器制氢工业化进程中可能会遇到的问题和需要解决的问题。  相似文献   

20.
Thermo-conversion of biomass is one of the leading near-term options for renewable production of hydrogen and has the potential to provide a significant fraction of transportation fuel required in the future. We propose a two-step process that starts with fast pyrolysis of biomass, which generates high yields of a liquid product, bio-oil, followed by catalytic steam reforming of bio-oil to produce hydrogen. A major advantage of such a concept results from the fact that bio-oil is much easier and less expensive to transport than either biomass or hydrogen. Therefore, the processing of biomass and the production of hydrogen can be performed at separate locations, optimized with respect to feedstock supply and to hydrogen distribution infrastructure. This approach makes the process very well suited for both centralized and distributed hydrogen production. This work demonstrates reforming of bio-oil in a bench-scale fluidized bed system and provides hydrogen yields obtained using several commercial and custom-made catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号