首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical design methodology for continuous-time (CT) bandpass (BP) /spl Sigma//spl Delta/ modulators is presented. Second- and fourth-order tunable continuous time BP /spl Sigma//spl Delta/ modulator design equations are presented. A novel /spl Sigma//spl Delta/ loop architecture, where the traditional CT BP loop filter function is replaced with the filter function with fractional delays, is proposed. Validity of the methodology is confirmed by mixed-signal behavioral simulations.  相似文献   

2.
A third-order continuous-time multibit (4 bit) /spl Delta//spl Sigma/ ADC for wireless applications is implemented in a 0.13-/spl mu/m CMOS process. It is shown that the power consumption can be considerably reduced by using a tracking ADC composed of three comparators with interpolation instead of using a 4-bit flash quantizer. Moreover, the usage of a tracking ADC opens the door to a new forward-looking dynamic element matching (DEM) technique, which helps to reduce the loop delay time and consequently improves the loop stability. The SNR is 74 dB over a bandwidth of 2 MHz. The ADC consumes 3 mW from a 1.5-V supply when clocked at 104 MHz. The active area is 0.3 mm/sup 2/.  相似文献   

3.
The design of a fifth-order 4-b quantizer single-loop /spl Sigma//spl Delta/ modulator is presented that achieves 25-MS/s conversion rate with 84 dB of dynamic range and 82 dB of signal-to-noise ratio. Implemented in a 0.18-/spl mu/m CMOS technology, the 0.95-mm/sup 2/ chip has a power consumption of 200 mW from a 1.8-V supply.  相似文献   

4.
We present a 90-dB spurious-free dynamic range sigma-delta modulator (/spl Sigma//spl Delta/M) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25-/spl mu/m CMOS process with metal-insulator-metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within /spl plusmn/0.85 and /spl plusmn/0.80 LSB/sub 14 b/, respectively. The /spl Sigma//spl Delta/ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the /spl Sigma//spl Delta/ modulator.  相似文献   

5.
A delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converter featuring 68-dB dynamic range and 64-dB signal-to-noise ratio in a 1-MHz bandwidth centered at an intermediate frequency of 2 MHz with a 48-MHz sample rate is reported. A second-order continuous-time modulator employing 4-bit quantization is used to achieve this performance with 2.2 mW of power consumption from a 1.8-V supply. The modulator including references occupies 0.36 mm/sup 2/ of die area and is implemented in a 0.18-/spl mu/m five-metal single-poly digital CMOS process.  相似文献   

6.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

7.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

8.
We derive a method for using distributed resonators in /spl Delta//spl Sigma/ modulators and demonstrate these /spl Delta//spl Sigma/ modulators have several advantages over existing /spl Delta//spl Sigma/ modulator architectures. Like continuous-time (CT) /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators do not require a high-precision track-and-hold, and additionally can take advantage of the high-Q of distributed resonators. Like discrete-time /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators are relatively insensitive to feedback loop delays and can subsample. We present simulations of several types of these /spl Delta//spl Sigma/ modulators and examine the challenges in their design.  相似文献   

9.
This paper describes a third-order sigma-delta (/spl Sigma//spl Delta/) modulator that is designed and implemented in 0.18-/spl mu/m CMOS process. In order to increase the dynamic range, this modulator takes advantage of mixed-mode integrators that consist of analog and digital integrators. A calibration technique is applied to the digital integrator to mitigate mismatch between analog and digital paths. It is shown that the presented modulator architecture can achieve a 12-dB better dynamic range than conventional structures with the same oversampling ratio (OSR). The experimental prototype chip achieves a 76-dB dynamic range for a 200-kHz signal bandwidth and a 55-dB dynamic range for a 5-MHz signal bandwidth. It dissipates 4 mW from 1.8-V supply voltages and occupies 0.7-mm/sup 2/ silicon area.  相似文献   

10.
This paper presents the design and implementation of a high-order /spl Sigma//spl Delta/ interface for micromachined inertial sensors, which employs an electronic filter in series with the mechanical sensor element to reject the excessive in-band quantization noise inherently present in state-of-the-art second-order solutions. A fourth-order prototype was fabricated in a standard 0.5-/spl mu/m CMOS process. The active circuit area measures 0.9 mm/sup 2/, and the interface consumes 13 mW from a 5-V supply and achieves resolution of 1/spl deg//s//spl radic/Hz with a gyroscope and 150/spl mu/g//spl radic/Hz with an accelerometer. Comparison between the measured and simulated behavior of the system shows that the contribution of the quantization error to the total noise is negligible.  相似文献   

11.
The design of a 2.4-GHz fully integrated /spl Sigma//spl Delta/ fractional-N frequency synthesizer in a 0.35-/spl mu/m CMOS process is presented. The design focuses on the prescaler and the loop filter, which are often the speed and the integration bottlenecks of the phase-locked loop (PLL), respectively. A 1.5-V 3-mW inherently glitch-free phase-switching prescaler is proposed. It is based on eight lower frequency 45/spl deg/-spaced phases and a reversed phase-switching sequence. The large integrating capacitor in the loop filter was integrated on chip via a simple capacitance multiplier that saves silicon area, consumes only 0.2 mW, and introduces negligible noise. The synthesizer has a 9.4% frequency tuning range from 2.23 to 2.45 GHz. It dissipates 16 mW and takes an active area of 0.35 mm/sup 2/ excluding the 0.5-mm/sup 2/ digital /spl Sigma//spl Delta/ modulator.  相似文献   

12.
A 0.7-V MOSFET-only /spl Sigma//spl Delta/ modulator for voice band applications is presented. The second-order modulator is realized using a switched-opamp technique. All capacitors are realized using compensated MOS devices operated in the depletion region. A combination of parallel and series compensated depletion-mode MOSCAPs is used to obtain high area efficiency. The circuit is fabricated in a 0.18-/spl mu/m CMOS process. The only components used are standard n-MOS and p-MOS transistors with threshold voltages of approximately 400 mV. All transistors are operated within the supply voltage window of 0.7 V; voltage boosting techniques are not used. The active area is 0.082 mm/sup 2/. The modulator achieves 67-dB signal-to-noise-and-distortion ratio, 70-dB signal-to-noise ratio, and 75-dB dynamic range at 8-kHz signal bandwidth and consumes 80 /spl mu/W of power.  相似文献   

13.
A high-resolution multibit sigma-delta analog-to-digital converter (ADC) implemented in a 0.18-/spl mu/m CMOS technology is introduced. The circuit is targeted for an asymmetrical digital subscriber line (ADSL) central-office (CO) application . An area- and power-efficient realization of a second-order single-loop 3-bit modulator with an oversampling ratio of 96 is presented. The /spl Sigma//spl Delta/ modulator features an 85-dB dynamic range over a 300-kHz signal bandwidth. The measured power consumption of the ADC core is only 15 mW. An innovative biasing circuitry is introduced for the switched-capacitor integrators.  相似文献   

14.
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage /spl Delta//spl Sigma/ interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q/sup 2/ Random Walk switching scheme. The /spl Delta//spl Sigma/ interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage /spl Delta//spl Sigma/ noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-/spl mu/m CMOS technology with active area of 1.11mm/sup 2/ including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm/sup 2/. The total power consumption of the DDFS is 200mW with a 3.3-V power supply.  相似文献   

15.
Receivers are being digitized in a quest for flexibility. Analog filters and programmable gain stages are being exchanged for digital processing at the price of a very challenging ADC. This paper presents an alternative solution where the filter and programmable gain functionality is integrated into a /spl Sigma//spl Delta/ ADC. The novel filtering ADC is realized by adding a high-pass feedback path to a conventional /spl Sigma//spl Delta/ ADC while a compensating low-pass filter in the forward path maintains stability. As such, the ADC becomes highly immune to interferers even if they exceed the maximum allowable input level for the wanted channel. As a consequence, the ADC input range can be programmed dynamically to the level of the wanted signal only. This results in an input-referred dynamic range of 89 dB in 1-MHz bandwidth and an intentionally moderate output signal-to-noise-and-distortion ratio of 46-59 dB (depending on the programmed gain). The merged functionality enables a better overall power/performance balance for the receiver baseband. The design consumes less than 2 mW and active area is 0.14 mm/sup 2/ in a 0.18-/spl mu/m digital CMOS technology.  相似文献   

16.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

17.
This paper presents a quadrature bandpass /spl Sigma//spl Delta/ modulator with continuous-time architecture. Due to the continuous-time architecture and the inherent anti-aliasing filter, the proposed /spl Sigma//spl Delta/ modulator needs no additional anti-aliasing filter in front of the modulator in contrast to quadrature bandpass /spl Sigma//spl Delta/ modulators with switched-capacitor architectures. The second-order /spl Sigma//spl Delta/ modulator digitizes complex analog I/Q input signals at 1-MHz intermediate frequency and operates within a clock frequency range of 25-100 MHz. The modulator chip achieves a peak signal-to-noise-distortion ratio (SNDR) of 56.7 dB and a dynamic range of 63.8 dB within a 1-MHz signal bandwidth and at a clock frequency of 100 MHz. Furthermore, it provides an image rejection of at least 40 dB. The 0.65-/spl mu/m BiCMOS chip consumes 21.8 mW at 2.7-V supply voltage.  相似文献   

18.
This paper presents the design and experimental results of a continuous-time /spl Sigma//spl Delta/ modulator for ADSL applications. Multibit nonreturn-to-zero (NRZ) DAC pulse shaping is used to reduce clock jitter sensitivity. The nonzero excess loop delay problem in conventional continuous-time /spl Sigma//spl Delta/ modulators is solved by our proposed architecture. A prototype third-order continuous-time /spl Sigma//spl Delta/ modulator with 5-bit internal quantization was realized in a 0.5-/spl mu/m double-poly triple-metal CMOS technology, with a chip area of 2.4 /spl times/ 2.4 mm/sup 2/. Experimental results show that the modulator achieves 88-dB dynamic range, 84-dB SNR, and 83-dB SNDR over a 1.1-MHz signal bandwidth with an oversampling ratio of 16, while dissipating 62 mW from a 3.3-V supply.  相似文献   

19.
In this paper, we present a new continuous-time bandpass delta-sigma (/spl Delta//spl Sigma/) modulator architecture with mixer inside the feedback loop. The proposed bandpass /spl Delta//spl Sigma/ modulator is insensitive to time-delay jitter in the digital-to-analog conversion feedback pulse, unlike conventional continuous-time bandpass /spl Delta//spl Sigma/ modulators. The sampling frequency of the proposed /spl Delta//spl Sigma/ modulator can be less than the center frequency of the input narrow-band signal.  相似文献   

20.
A 1 V switched-capacitor (SC) bandpass sigma-delta (/spl Sigma//spl Delta/) modulator is realized using a high-speed switched-opamp (SO) technique with a sampling frequency of up to 50 MHz, which is improved ten times more than prior 1 V SO designs and comparable to the performance of the state-of-the-art SC circuits that operate at much higher supply voltages. On the system level, a fast-settling double-sampling SC biquadratic filter architecture is proposed to achieve high-speed operation. A low-voltage double-sampling finite-gain-compensation technique is employed to realize a high-resolution /spl Sigma//spl Delta/ modulator using only low-DC-gain opamps to maximize the speed and to reduce power dissipation. On the circuit level, a fast-switching methodology is proposed for the design of the switchable opamps to achieve a switching frequency up to 50 MHz. Implemented in a 0.35-/spl mu/m CMOS process (V/sub TP/=0.82 V and V/sub TN/=0.65 V) and at 1 V supply, the modulator achieves a measured peak signal-to-noise-and-distortion ratio (SNDR) of 42.3 dB at 10.7 MHz with a signal bandwidth of 200 kHz, while dissipating 12 mW and occupying a chip area of 1.3 mm/sup 2/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号