首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
针对步行机器人的节能需求,提出以降低系统能耗为目标的六足步行机器人力矩分配算法.通过建立六足步行机器人的运动学模型和改进的波浪步态模型,提出六足机器人足端脚力分配问题.在分析机器人的平衡条件并结合摩擦约束的基础上,建立机器人足端脚力的约束方程.利用机器人的动力学模型,得到机器人足端脚力约束方程与关节力矩约束之间的变换关系.在考虑直流电机的有效功率和热损耗的基础上,通过求解线性等式与不等式约束下的二次规划问题,对各关节力矩进行优化分配.通过与传统的以内力平方和最小化为优化目标的脚力分配方法相比较证明,在合适的步进速度和步态占地系数下,机器人采用新的力矩分配方法时能够节省系统能耗22%~39%.  相似文献   

2.
针对所设计的一种基于液压驱动的六足机器人步行腿,建立了腿部运动学模型并分析了其足端运动空间。构建了腿部性能测试系统,设计了性能测试台控制系统硬件,并开发了运动测试软件。试验结果表明:腿部单关节的运动跟踪误差和关节协调运动跟踪误差均小于1°,关节动态特性满足频率0.5Hz时幅值衰减小于-3dB,验证了步行腿性能能够满足六足机器人的运动需求。  相似文献   

3.
主要对六足步行机器人进行步态规划和运动学建模,规划了六足步行机器人的直行步态和足端轨迹.基于MATLAB软件建立机器人的逆运动学模型,生成机器人步行时各个驱动关节的变化曲线.通过在六足步行机器人的实验平台上模拟机器人的实际运动状态得到机器人步行时的轨迹曲线,分析了机器人的步行性能,验证了步态规划的可行性和运动学方程的正确性.  相似文献   

4.
基于自适应-模糊控制的六足机器人单腿柔顺控制   总被引:1,自引:0,他引:1  
针对六足机器人在不同环境下进行柔顺控制的问题,提出一种基于自适应-模糊控制算法的腿部柔顺控制策略.在建立六足机器人结构模型和阻抗控制模型的基础上,推导间接自适应控制算法,并通过对该算法参数进行分析,得知该算法并不能满足在复杂环境下机器人脚力控制的要求.根据这一情况提出自适应-模糊控制算法,运用模糊控制算法对自适应控制参数进行修正,根据输入与输出的差异关系实时调整参数以得到满意的系统响应.通过对传统的间接自适应控制和改进后自适应-模糊控制算法的比较分析,结果表明,改进后的算法不仅在环境参数发生变化时能够很好跟随期望接触力,而且在躯体高度波动的情况下依然能够保证较小的接触冲击力和较高的稳态精度.这对于提高六足机器人的适应性有着重要意义.  相似文献   

5.
基于闭环矢量法的六足机器人关节位姿研究   总被引:1,自引:0,他引:1  
设计出了一种新型的三自由度缩放式的并联机构,并把该机构作为六足步行机器人的腿机构.采用闭环矢量法求解腿机构运动位置的正运动学问题,用MATLAB软件编写函数来求解腿机构的最大腿行程和最大抬跨高度/研究表明,原动件较小的位移可以获得较大的足端运动空间.  相似文献   

6.
将三角步态应用于六足步行机器人定半径转弯步态中,提出基于三角步态的定半径转弯步态规划方法,简化了六足步行机器人转弯步态.将利用重心直线段轨迹跟踪定半径圆轨迹的方法运用到六足步行机器人的定半径转弯步态中,提出基于稳定性约束和腿运动约束条件下的六足步行机器人最大转弯角度的求解方法.在六足步行机器人定半径转弯步态中,对于2组腿分别作为支撑腿转弯时,采用不同的转弯角度从而有效地利用机器人转弯过程中每步的转弯能力.利用MATLAB和ADAMS软件对基于三角步态的六足步行机器人定半径转弯步态进行仿真,仿真结果验证了提出的转弯步态规划方法的正确性.  相似文献   

7.
本文提出一种基于2-SPR/RUPR并联机构的四足步行机器人.用改进复合曲线法规划了机械腿足端行走点轨迹.在四足步行机器人的足端行走点沿前进方向的加速度曲线为正弦函数,沿竖直方向的加速度曲线为分段函数的情形下,通过对前进方向、竖直方向加速度曲线两次积分得到足端轨迹曲线.由足端轨迹曲线变化规律可以得到其运动过程无突变点,足端可以实现无冲击抬腿与着地.仿真实验表明足端速度与加速度曲线与理论曲线一致,验证了理论计算的正确性.使用ZMP方法,通过对比分析机器人在运动过程中的重心调整量以及稳定裕度值得到最优步态.该四足步行机器人具有运动平稳且灵活的特性,适用于田垄等崎岖路面上需要大的移动步幅来运输重物的应用场合.  相似文献   

8.
四足机器人在对角小跑运动下的稳定性问题是当前四足机器人研究的热点,故分析了机体力矩对机体运动过程中稳定性的影响,提出一种新的足端轨迹函数。首先对机器人进行运动学分析,参照优宝特型四足机器人建立三维模型并搭建了仿真环境;然后分析机体力矩,得出机体翻转原因,即机体腿部摆动对机体产生的反作用力矩和重力产生的倾覆力矩以及运动中足端所受到的冲击力矩。在此基础上,通过利用机器人摆动腿侧摆关节运动提供一个力矩以平衡部分反作用力矩和倾覆力矩,提出了一种基于三维空间曲线的足端轨迹规划。最后,通过对比仿真实验验证了所提足端轨迹规划的有效性和正确性。  相似文献   

9.
采用自主研发的气动柔性关节,研制了一种地面移动六足机器人,能够实现前后、左右移动和转动等功能.重点研究了柔性关节六足机器人腿部结构、关节的运动原理和行进步态.搭建了试验台,通过高速摄像等实验手段,验证了机器人步态规划的合理性.为气动柔性关节六足机器人在实践中的应用,提供了理论与实践基础.  相似文献   

10.
为了提高四足机器人对角步态的稳定性,缓解对角步态摆动相两条腿不能同时着地的问题,从足端轨迹优化、足端初始位置选择这两方面进行步态规划.通过D-H法建立四足机器人运动学模型,几何法求运动学逆解.基于零冲击原则优化足端轨迹函数,选取8种不同的初始足端位置进行仿真.从足端冲击力、机体位移、俯仰角、滚动角、偏航角的变化等方面分...  相似文献   

11.
针对气动柔性关机六足机器人腿部关节提升高度小,越障能力差的问题,设计了一种基于平行四杆机构的腿关节提升机构。搭建了运动学实验平台,并对样机进行运动学实验研究。实验结果表明:该提升机构能够有效的将腿部关节提升高度增加19mm,使机器人越障能力扩大为原来的1.63倍,为气动柔性关节六足机器人的研究奠定了基础。  相似文献   

12.
为了提高四足机器人的载重自重比,综合了一种新型串并混联四足步行机器人,并针对其运动过程的冲击问题,使用了一种基于高次多项式的零冲击足端轨迹规划算法.该机器人每条腿均是由3-RRR并联机构串联一个转动机构组成.此机构利用D-H的方法建立坐标系,利用足端轨迹规划算法在世界坐标系对串并混联腿的摆动相进行足端轨迹规划,支撑相利用匀速直线运动进行规划.根据反解模型,计算出足端在髋关节全局坐标系下的足端轨迹.然后,基于混联腿的运动学逆解用Matlab编程计算得出串并混联腿的四个驱动函数.最后,把单腿模型导入到ADAMS中,添加约束、驱动后,利用ADAMS对串并混联腿进行运动仿真.结果显示,该混联腿的足端实现了零冲击规划的目标,且足端轨迹的速度、加速度平滑.由此表明仿真结果与理论结果相符,验证了该算法的合理性和有效性,为进一步研究四足机器人的步态规划和运动控制奠定了基础.  相似文献   

13.
液压四足机器人的自适应模糊PID控制   总被引:2,自引:1,他引:1  
为提高液压四足机器人的控制性能和足端轨迹跟踪效果,将自适应模糊PID算法用于机器人腿关节控制,并对PID参数进行实时增量调节.建立阀控非对称缸系统的数学模型,分析其伸出和缩回运动时由非线性、参数时变等因素导致的控制问题,利用AMESim-Simulink联合仿真模型对算法的控制效果进行了仿真,并在单腿试验平台上进行了实物样机测试.结果表明:自适应模糊PID算法的控制效果在减小调节时间、抑制干扰等方面相比常规PID有较大改善.该控制算法提高了机器人的动态跟踪性能,易于工程应用,有利于机器人的运动控制.  相似文献   

14.
针对六足步行机器人在非结构化地形下运动时方向转动角度大小对控制的影响,运用差分控制方法导出六足步行机器人在非结构化地形下行走时各足端的方位信息,在保持机体和足端协调性的同时,保证机器人在运动过程中不与复杂的地面发生接触,顺利地完成机器人左右转弯运动。在仿真实验中得到了满意的结果,为将来的实际应用奠定基础。  相似文献   

15.
针对仿生六足机器人的智能运动控制问题,提出一种基于中枢神经模式发生器(CPG)的控制方法.传统CPG控制方法无法很好地控制机器人足端轨迹,而本CPG控制方法中加入了用于足端轨迹控制的轨迹发生器模块,通过调节参数值可以实现机器人的全方向运动控制.为降低传统CPG控制中传感信息反馈以及参数调整的复杂程度,设计2种用于传感信号处理的神经网络.该模块实现多传感信号的融合,并生成用以控制机器人运动行为的各个参数值,实现机器人的自主避障.设计一个仿生六足机器人样机,将其分别放置在两种不同的情境下进行自主避障行走实验,结果证明了机器人全方向运动控制算法和自主避障算法的可行性.  相似文献   

16.
当四足机器人行走在不规则的地形中时,会受到意料之外的干扰导致机器人失去平衡。为解决该问题,设计一个应用于18个自由度的四足机器人平衡控制器,在机器人受到外界干扰时能够恢复其平衡;该平衡控制器通过PD控制器计算机器人恢复平衡所需加速度,并据此提出一种四足机器人平衡算法;该算法建立独立关节空间,采用贝塞尔曲线法对机器人足端进行规划。实验结果表明,该算法能够在机器人受到外界干扰时及时调整机器人的主体位置方向来维持平衡。  相似文献   

17.
基于Wilson-Cowan神经振荡器的四足机器人步态规划研究   总被引:1,自引:0,他引:1  
中枢模式发生器(central pattern generator,CPG)是一种重要的机器人节律运动控制方法。在Wilson-Cowan神经振荡器基础上,提出了一种新的CPG控制器,用于四足机器人的节律运动控制,每个Wilson-Cowan神经振荡器分别对应机器人的一个步行腿,对机器人的腿进行协调运动控制。通过调整振荡器之间的步态连接权矩阵,可以实现机器人不同的节律运动和各种运动模式间的转换。计算机仿真表明:本文提出的CPG控制方法能够稳定的生成不同步态的机器人运动轨迹,输出结果能够较好地符合各种步态的相位要求。  相似文献   

18.
针对传统CPG控制方法无法很好地控制机器人足端轨迹的问题,提出基于中枢神经模式发生器(CPG)的控制方法.在CPG控制方法中加入用于足端轨迹控制的轨迹发生器模块,通过调节参数值可以实现机器人的全方向运动控制.为降低传统CPG控制中传感信息反馈以及参数调整的复杂程度,设计2种用于躲避前方和两侧障碍物的传感信号处理的神经网络.该模块实现多传感信号的融合,生成用以控制机器人运动行为的各个参数值,实现机器人的自主避障.设计一个仿生六足机器人样机,将其分别放置在墙角和狭窄空间中进行自主避障行走实验,结果证明了机器人全方向运动控制算法和自主避障算法的可行性.  相似文献   

19.
由于排爆工作的危险性和复杂的工作环境,针对于提高复杂地形的运动能力设计了一款承载机构为六足机器人的排爆机器人.利用三维绘图软件SoildWorks绘制排爆机器人三维模型,构建机器人D-H参数坐标系,使用MTALAB对机构进行运动分析.为排爆机器人设计了抛物线足端轨迹和复合型足端轨迹两种轨迹规划的方式,应对平整和相对崎岖的两种路面情况.根据仿真结果的运动轨迹和关节信息分析两种路况下的足端轨迹空间和运动平稳性,验证了排爆机器人运动机构设计和足端轨迹的合理性.  相似文献   

20.
轨迹规划是六足机器人研究领域的重要内容之一.使用5次NURBS曲线插值法对机器人腿部进行各关节的轨迹规划,使得各关节在腿部运动时的角度、角速度和角加速度曲线能够平稳连续,从而提高腿部运动的平稳性、动作快速性.通过MATLAB仿真和机器人试验证明:采用5次NURBS曲线插值法可以使机器人在运动过程中保持腿部连续平稳,降低了各关节运动产生的突变对机器人腿部的冲击,使机器人的运行轨迹得到一定的优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号