共查询到20条相似文献,搜索用时 15 毫秒
1.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s~(-1)和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴. 相似文献
2.
超高强Al-Zn-Mg-Cu-Zr合金的热变形行为 总被引:8,自引:2,他引:8
采用圆柱试样在Gleeble-1500热模拟机上进行恒温和恒速压缩变形实验,变形温度范围为350~450℃,应变速率范围为0.001~0.1s^-1。研究了。7055铝合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n。结果表明,流变应力随变形温度的升高而降低,随应变速率的提高而增大。可用应力-应变速率方程来描述7055铝合金高温压缩变形时的热变形行为。这种合金在350~450℃温度范围内的热变形组织为发生了动态回复并伴随有少量再结晶的组织。 相似文献
3.
采用Gleeble-3500热模拟试验机进行热压缩试验,研究了Cu-3.6Ni-1.0Si合金在变形温度为500~950℃、变形速率为0.01~10s。状态下的热塑性变形行为。根据应力.应变数据,构建了cu.3.6Ni-1.0Si合金热塑性变形过程中流变应力与变形温度、变形速率等加工参数之间的本构关系方程。经过参数拟合与优化,得到Cu-3.6Ni-1.0Si合金在650~950℃之间、热变形过程的应力.应变速率关系方程。试验结果及分析表明,Cu-3.6Ni-1.0Si合金加热保温及开轧温度应以950℃为上限,终轧温度以高于7000C为宜,不能低于650℃,热轧加工变形速率范围在0.1~10s-1之间。 相似文献
4.
新型喷射成形镍基高温合金热变形行为的研究 总被引:1,自引:0,他引:1
采用Gleeble-3500热模拟实验机对新型喷射成形镍基高温合金在1050~1140℃,应变速率为0.01~10.0 s-1,最大工程应变量为80%的条件下,进行了等温恒应变轴向压缩热变形实验。确定了该合金最佳热变形条件为温度1050℃,应变速率10.0 s-1,工程应变量20%~60%;分析了变形条件对流变应力、峰值应力及软化系数的影响规律,在相同的应变速率下,随着温度的升高,峰值应力降低;在相同的实验温度下,随着应变速率的升高,峰值应力降低;软化系数增加。计算了该喷射成形合金的热变形激活能为920.74 kJ.mol-1,从而确定了该合金的本构方程,经验算此方程较好地描述该合金的变形特点。 相似文献
5.
Al-Cu-Mg-Ag合金热压缩变形行为的预测 总被引:1,自引:0,他引:1
采用了热模拟实验机研究了Al-Cu-Mg-Ag耐热铝合金的热压缩变形行为。实验的温度和应变速率分别为340~500℃,0.001~10 s-1。分别用了本构方程和人工神经网络来对Al-Cu-Mg-Ag合金的流变行为进行了分析和模拟。神经网络的结构是3-20-1;输入参数是温度,应变速率和应变;输出参数是流变应力。结果表明该合金的流变曲线出现加工硬化、过渡、软化和稳态流变这4个阶段,流变应力随着应变速率的增加而增大,随着变形温度的下降而减少。用所建立的神经网络模型预测了变形温度和应变速率对流变应力的影响,预测的结果与热压缩变形的基础理论吻合得很好,而且该模型可以很好地描述Al-Cu-Mg-Ag合金的流变应力,在应变速率为0.001~10 s-1的条件下,其平均相对误差分别为3.68%,3.98%,1.53%,3.53%和2.04%。这表明神经网络的预测性能优良,具有很强的推广能力。同时通过本构方程和神经网络的预测结果比较看出神经网络模型的相关系数比较高,而且神经网络比本构方程有更好的预测性能。神经网络可以预测不同应变下的相应的流变应力,但是本构方程只可以根据不同的应变速率和温度来预测峰值应力。 相似文献
6.
7.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423 K,应变速率为0.1~10 s-1,真应变为0.8的条件下,对一种传动部件用高强度渗碳钢(SAE9310钢)进行了高温轴向压缩试验,测得了SAE9310钢的高温流变曲线,并观察其变形后的显微组织。试验结果表明,SAE9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;SAE9310钢在真应变为0.8的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高,当热变形温度高于1323 K时,应变速率在0.1~10 s-1范围内,试验钢均会发生动态完全再结晶;测得9310钢的热变形激活能Q值为416.78 kJ/mol,并确立了其热变形方程。 相似文献
8.
Mg-Y-Nd-Gd-Zr稀土镁合金热变形行为 总被引:2,自引:4,他引:2
通过差热分析、 X射线衍射、金相显微镜等手段分析了Mg-Y-Nd-Gd-Zr稀土镁合金的微观组织, 结合差热分析结果以及金相显微组织, 得出在550 ℃均匀化热处理6 h以上能够使大部分合金元素固溶.采用GLEEBLE-1500热模拟实验机对Mg-Y-Nd-Gd-Zr稀土镁合金在温度为250~450 ℃、应变速率为0.002~1 s-1、最大变形程度为50%的条件下, 进行了热压缩实验研究.结果表明: 材料流变应力行为和显微组织受到变形温度和变形速率的严重影响, 可以用Zener-Hollomon参数的幂指数形式进行描述, 计算出变形激活能为223.69 kJ·mol-1.合金的峰值流变应力随应变速率的增加而增加, 随温度的升高而降低; 变形激活能随应变速率的增大而增大. 相似文献
9.
新型Al-Zn-Mg-Cu合金热变形流变应力特征 总被引:1,自引:4,他引:1
采用Gleeble-1500热模拟机进行热压缩变形实验,研究了一种新型Al-7.5Zn-1.6Mg-1.4Cu-0.12Zr合金在变形温度为380-460℃、应变速率为0.001~0.1 s-1条件下的流变应力特征,并利用TEM分析了合金在不同变形条件下的组织形貌特征.结果表明,应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大;合金平均亚晶尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小.可用Zener-Hollomon咖参数描述该Al-Zn-Mg-Cu合金热变形时的流变应力行为. 相似文献
10.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。 相似文献
11.
采用圆柱试样在Gleeble-1500热/力模拟试验机上进行高温压缩变形试验,研究了2124铝合金在高温塑性变形过程中流变应力的变化规律.试验在变形温度为350~480 ℃、应变速率0.04~10 s-1的条件下进行.结果表明:应变速率和变形温度的变化对合金稳态流变应力有明显的影响,在低应变速率条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出近稳态特征;而在高应变速率条件下,应力出现强烈锯齿波动,达到峰值后随着应变的增加锯齿波动趋于平缓;2124铝合金高温塑性变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述. 相似文献
12.
在应变速率为0.01~10.00 s-1、变形温度为700~850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu-Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu-Ag合金的最佳变形工艺参数主要处于3个区间:低温低应变速率区(变形温度为700~770℃,应变速率为0.0100~0.0316 s-1),该区域的峰值功率耗散系数η为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1~1.0 s-1),该区域的峰值功率耗散系数η为0.33;和高温高应变速率区(变形温度为835~850℃,应变速率为3.162~10.000 s-1),该区域的功率耗散系数η峰值为0.33。 相似文献
13.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423K,应变速率为0.5~10s-1的条件下,对航空用高强韧性的二次硬化超高强度钢(AF1410钢)进行了高温轴向压缩试验,测得了AF1410钢的高温流变曲线,并观察了变形后的显微组织。试验结果表明,AF1410钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;AF1410钢在真应变为0.8,应变速率为0.5~10s-1的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10s-1时,其变形温度高于1373K,才会发生完全动态再结晶;AF1410钢的热变形激活能Q值为430.39kJ/mol,并确立了其热变形方程。 相似文献
14.
用Gleeble-3500热力模拟试验机在温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下对一种非调质连杆用高碳微合金钢进行了热压缩变形试验,测得了其流变曲线,并观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.试验用钢在真应变为0.8,温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下,发生完全动态再结晶.测得试验用钢的热变形激活能为289.9 kJ/mol,并得出了其热变形方程,以及动态再结晶晶粒尺寸与Zener-Hollomon参数之间的关系和动态再结晶状态图. 相似文献
15.
在Gleeble-3000D热模拟机上对Al-0.2Sc-0.04Zr铝合金开展了热变形实验,系统地研究该合金变形参数在0.001~5 s-1和440~600 ℃下的高温流变行为。研究结果表明:在低应变速率和较高的温度下,DRX的发生较为完全。同时,在较低温度(T≤520 ℃)下变形,主要软化机制为动态回复;在较高温度(T>520 ℃)下变形,软化机制转变为动态再结晶,且获得了较为完全的动态再结晶组织;在高温(T≥600 ℃)下变形,晶粒出现明显的长大。分析应力指数(n)和变形激活能(Q),二者均随变形温度的升高而增加。采用双曲正弦模型,建立了适合Al-0.2Sc-0.04Zr合金的本构方程,可很好地预测峰值应力,为工业化生产提供理论依据。 相似文献
16.
17.
王庆娟李香君任垚嘉周海雄 《钢铁研究学报》2018,30(12):998-1005
采用Gleeble-3500热模拟试验机,在温度为850~1 050℃,应变速率为0.01~50s-1范围内,对65盘条钢铸态和轧态进行热压缩试验,研究了2种初始状态对65盘条钢热变形行为的影响。分析了不同变形条件下65盘条钢的流变曲线、金相组织,计算了铸态与轧态的激活能,建立了不同初始状态下的变形抗力模型。结果表明:不同初始状态对65盘条钢的热变形行为影响较大。2种状态下的真应力-应变曲线均表现出对温度和应变速率的敏感性,轧态流变应力在应变约为0.6之前大于铸态,之后趋于一致,在相同的变形条件下轧态的峰值应力均高于铸态。2种状态下建立的周纪华-管克智本构方程表明轧态基准变形抗力值大于铸态,分别为165.07和147.05MPa。 相似文献
18.
采用Gleeble-1500热模拟机进行恒温和恒速压缩变形实验,变形温度范围为400~460 ℃,应变速率为0.001~0.1 s-1.研究了Al-Cu-Mg-Ag-Zr合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n.结果表明:流变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大.可用包含Arrhenius项的Zener-Hollomon参数描述该合金高温塑性变形时的流变行为. 相似文献
19.
20.
基于摩擦修正的TB8合金热压缩流变应力行为分析 总被引:2,自引:0,他引:2
采用Gieeble-1500热模拟试验机对TB8(Ti-15Mo-2.7Nb-3Al-0.2Si)合金进行了等温热压缩变形试验,温度范围为750-1100℃,应变速率范围为0.01~1s-1.在热压缩过程中由于摩擦影响导致流变应力不能真实反映材料的高温变形行为.采取一种简便的方法对实验数据进行了摩擦修正,研究了TBS合金热变形流变应力行为,并对合金的变形机制进行了初步探讨.结果表明:热压缩过程中摩擦对于流动应力的影响十分显著,采取的修正方法降低了实验中摩擦引起的误差;TB8合金的热变形行为具有高度的变形温度和应变速率敏感性,随着变形温度的提高和应变速率的降低,真应力显著降低;动态回复和动态再结晶是TB8高温变形时主要软化机制. 相似文献