首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粉末冶金TiAl合金热变形行为及加工图的研究   总被引:2,自引:1,他引:1  
采用热模拟压缩试验研究了粉末冶金TiAl合金在温度1000~1150℃、应变速率0.001~1s-1范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特性。为了研究TiAl合金在有限应变下的变形行为,基于动态材料模型(DMM)建立起了TiAl合金加工图。试验结果表明,在高应变速率(0.1s-1)变形时,材料落入流动失稳区域,出现表面开裂。这对材料的变形是有害的,要避免在流动失稳区进行热加工处理。而在温度为1000~1050℃,应变速率为0.001~0.01s-1时,功率耗散率η值在35%~50%之间。这个区域对应的变形机制为动态再结晶,适合进行热加工。在高温(≥1100℃),低应变速率(0.001s-1)变形时,功率耗散率η达到最大值60%,此时材料发生超塑性变形。  相似文献   

2.
用Gleeble-1500型热模拟机研究TC4-DT钛合金在850~1 100℃、应变速率0.001~10 s-1、变形量70%条件下的高温压缩热变形行为,分析了该合金的流变应力行为以及显微组织演变规律,建立了该合金的本构关系模型以及热加工图。研究结果表明,TC4-DT钛合金在两相区和β相区的热变形激活能分别为544.03 k J·mol-1和264.32 k J·mol-1,分别大于纯α相和纯β相的自扩散激活能,表明TC4-DT钛合金热变形由高温扩散以外的过程控制。在两相区热变形时,原始组织发生了不同程度的球化,且变形温度越低球化效果越好。在β相区热变形时,低应变速率下(0.001~0.1 s-1)主要发生动态再结晶,而高应变速率(1~10 s-1)下主要发生动态回复,动态再结晶行为受到抑制。TC4-DT钛合金的失稳区主要分布在低温高应变速率区域,变形温度主要在850~940℃,应变速率主要在0.1~10 s-1,功率耗散率η值小于28%。  相似文献   

3.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。  相似文献   

4.
采用Gleeble1500热模拟试验机对Al-Li-Cu-Mg-Zn-Ag合金进行等温热压缩实验,研究其在变形温度范围为300~500℃,应变速率范围为0.001~10 s-1内的热变形行为。分析了合金流变曲线特征,构建该合金在真应变分别为0.1,0.3和0.5时的加工图并讨论了真应变为0.5时的安全区和失稳区组织特征。结果表明:Al-Li-Cu-Mg-Zn-Ag合金的流变曲线分为过渡变形阶段和稳态变形阶段,流变应力的数值随变形温度的升高而减小,随应变速率的增加而增大;3种真应变下的加工图显示,能量耗散因子具有相似的变化趋势,均在高温低速区达到峰值,失稳区覆盖的范围随应变量的增加而增大,当真应变为0.5时,失稳区参数为变形温度300~480℃,应变速率0.01~10.00 s-1;当真应变为0.5时,安全区以动态回复组织为主,有少量动态再结晶,失稳区组织出现了局部流变带;在变形量较小(真应变0.5)的情况下,建议Al-Li-Cu-Mg-Zn-Ag合金热加工工艺为变形温度范围410~480℃,应变速率范围0.003~0.100 s~(-1)。  相似文献   

5.
在Gleeble-1500热模拟机上,对5A01铝合金进行等温热压缩实验,研究该合金在变形温度为350~450℃、应变速率为0.01~1s-1条件下的热变形行为,建立其热加工图。结果表明:5A01铝合金是温度、正应变速率敏感材料,其流变应力随变形温度降低和应变速率升高而增大,利用峰值应力获得的该合金热加工图表明合金热变形存在两个失稳区域,即变形温度为350~390℃,应变速率为0.01~0.2s-1的区域和变形温度为405~450℃,应变速率为0.2~1s-1的区域;本实验条件下最佳加工参数为变形温度450℃,应变速率0.01s-1。  相似文献   

6.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围.SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.   相似文献   

7.
为了解决Cr20Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 k J·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

8.
为了确定AZ31镁合金轧制工艺参数,利用Gleeble-3500热模拟试验机进行热压缩试验以测试其热变形行为,并根据动态材料模型理论得到其热加工图.当变形温度为380~400℃、应变速率为3~12 s-1时,功率耗散效率大于30%,属于动态再结晶峰区;在该区域进行异步轧制变形退火处理后得到平均晶粒直径为2.3μm的细晶组织,抗拉强度为322.7 MPa,延伸率为19.6%.当应变速率大于15 s-1时,属于流变失稳区,250~300℃低温加工时合金的塑性显著降低,350~400℃高温加工时合金出现混晶组织.   相似文献   

9.
采用Gleeble 3800热模拟实验机研究了Monel K-500合金在变形温度为850~1 100℃,应变速率为0.01~10s-1时的高温流变行为,测定了合金在不同条件下的流变应力曲线。结果表明,最大压缩变形量对合金的流变行为影响不大;变形温度相同时,合金在应变速率为0.1s-1时取得最大峰值应变;根据Arrhenius模型得到了合金的热变形本构方程。  相似文献   

10.
采用热模拟试验机对15Cr-30Ni-Fe基气阀合金试样在变形温度为900~1 050℃、应变速率为1~20 s-1内进行单道次热压缩变形试验,研究该合金的高温变形行为。试验结果表明,该合金为热敏感性和应变速率敏感型材料。15Cr-30Ni-Fe基气阀合金热加工图表明,该合金存在两个典型的动态再结晶区域,一个温度范围为1 030~1 050℃,应变速率为4~20 s-1,对应的峰值效率为25%;另一个温度范围为970~1 020℃,应变速率为8~20 s-1,对应的峰值效率为24%。  相似文献   

11.
为了研究热作模具钢5CrNiMoVNb的热变形行为,利用Gleeble3800热模拟试验机进行单道次热压缩实验,获得了应变速率为0.001~0.1 s-1和变形温度1 030~1 230℃条件下的高温流变应力曲线。应用双曲正弦函数构建了与应变有关的材料本构模型并验证,并基于动态材料模型构建了三维功率耗散图和三维失稳图,将二者叠加得到典型应变下的热加工图。结果表明,所有变形条件下的高温流变应力曲线均呈现典型动态再结晶特征,并且由于奥氏体基体析出强化相含量、动态再结晶体积分数的影响,流变应力随变形温度的降低或应变速率的增大而增大。基于5CrNiMoVNb钢的本构模型计算的流变应力值与实验值的相关性系数为0.992 7,较高的相关性系数表明建立的高温流变应力模型能够比较准确地预测合金的流变应力。此外,根据不同条件下的三维功率耗散图和三维失稳图可知,随着应变的增大,功率耗散峰值区向中温、高应变速率区域扩散,热变形失稳仅容易出现在低应变、低变形温度和高应变速率区域。真应变为0.8时,最佳的加工工艺参数范围为:变形温度为1 080~1 200℃,应变速率为0.01~0.1 s...  相似文献   

12.
在MTS810试验机上进行了MX246A合金的热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,建立了MX246A合金的热加工图。结果表明,Ni3Al基MX246A合金的流变应力随着变形程度的增加先达到峰值应力,之后逐渐降低,趋于稳态流变。在较高的应变速率变形时容易达到稳态流变,在较低的应变速率时,随着应变量从临界应变逐渐增大,流变应力单调递减,并且随着温度的升高,单调递减的速率逐渐增大。真应变量为0.7的MX246A合金的加工图上存在一个安全加工区,对应的温度在1 220℃附近,应变速率在0.001s-1附近。随着真应变量的增大,功率耗散峰值区域逐渐向高温区移动,功率耗散的微观机制随之由动态回复向γ′相的回溶转变。  相似文献   

13.
采用Glebble-1500D热模拟试验机,在350~500℃变形温度、0.01~10.00 s-1应变速率条件下进行等温压缩变形,研究40%Si Cp/Al复合材料(体积分数)的热加工性能。通过热变形真应力-真应变曲线分析复合材料的热变形规律,建立材料本构方程,利用动态材料模型计算出应变速率敏感指数和功率耗散效率系数,绘制出功率耗散图、失稳图及二维加工图。结果表明,应变速率和变形温度显著影响流变应力,应变速率一定时,变形温度升高,流变应力减小;在相同的变形温度下,随应变速率的增加,流变应力也随之升高。根据加工图可知,在高温高应变速率条件下,材料的功率耗散效率系数大,说明该变形区域发生了组织转变;应变对失稳区域和加工区域影响不大,功率耗散效率系数随应变的增加而增大。40%Si Cp/Al复合材料建议热加工条件为变形温度436~491℃,应变速率0.04~9.97 s-1。  相似文献   

14.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1200℃、应变速率为0.001~10.000 s-1条件下的热变形行为,利用动态材料模型构建了GH690合金热加工图,并基于加工图进行GH690合金管材热挤压实验。结果表明:GH690合金有应力峰和动态再结晶软化的特征,在ε≥0.4时,流动应力趋于稳定状态;在热加工图中变形温度为1100~1150℃、应变速率为1.0~2.5 s-1时功率耗散效率达到0.34~0.39,该区域对应的工艺参数适合于进行GH690合金管材热挤压;在热加工图中变形温度为950~1000℃,应变速率在0.94~10.00 s-1之间的区域为不稳定变形区域,热加工时应该避开这一区域。  相似文献   

15.
马昕  许斯洋  周舸  丁桦 《中国冶金》2006,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

16.
利用Gleeble-1500热模拟实验机研究了新型Ti-6Cr-5Mo-5V-4Al合金在740~950℃,应变速率0. 01~10. 00 s~(-1)条件下的热变形行为。通过真应力-真应变曲线分析了合金在高温变形时的应力随温度及应变速率的变化规律,之后对数据进行回归分析得到了合金的本构方程,最后绘制合金的热加工图并结合微观组织观察研究该合金的热变形机制。结果如下:合金的流变应力对温度和应变速率都十分敏感。在相同的应变速率下,随温度升高,流变应力降低;而在相同温度下,应变速率升高,流变应力也升高。计算得到合金的动态激活能Q为246. 551 kJ·mol~(-1)。高温变形的本构方程为ε=4. 51×10~(10)[sinh(0. 0058σ)]~(4. 85272)exp(-246551/RT)。根据热加工图可知,两相区变形时,合金在温度740~770℃、应变速率0. 01~0. 03 s~(-1)的区域内具有最高的功率耗散系数,达到44%,变形机制为动态回复;β单相区变形时,在温度780~890℃、应变速率0. 01~0. 03 s~(-1)的区域内具有较高的功率耗散系数,为40%,变形机制包括动态回复和动态再结晶。合金的塑性失稳区主要在温度740~900℃、应变速率0. 05~1. 00 s~(-1)的区域内,失稳区内会发生局部塑性流动。  相似文献   

17.
通过等温恒应变速率压缩试验,研究了2种FGH98合金粉末热等静压锭坯在1 050~1 150℃/0.005~1.000 s-1的变形行为。基于动态材料模型,建立了2种粉末锭坯的热加工图。结果表明,2种粉末锭坯的流变曲线特征相似,同种变形条件下,氩气雾化(AA)粉末锭坯的峰值应力小于等离子旋转电极(PREP)粉末锭坯。AA粉末锭坯的最佳变形窗口为1 088~1 108℃/0.005~0.016 s-1,功率耗散效率η大于42%;PREP粉末锭坯的最佳变形窗口为1 098~1 120℃/0.010~0.016 s-1,η大于40%。  相似文献   

18.
为了研发高性能颗粒增强铝基复合材料,采用Gleeble-3800热模拟试验机,研究了粉末冶金15%SiC_p/2009A1复合材料在变形温度为370~520℃、应变速率为0.01~10.00 s-1条件下的高温变形特性。结果表明,当变形速率一定时,该复合材料的流变应力随变形温度升高而降低;当变形温度一定时,复合材料的流变应力随应变速率增大而提高。采用动态材料模型建立了15%SiC_p/2009A1复合材料的热加工图。热加工图表明,在较高应变速率区域(2.00~10.00 s~(-1)),出现流变失稳,有少量颗粒—基体界面开裂和SiC颗粒本身破碎。该复合材料的动态再结晶区域位于加工图的较低应变速率区域(1.00 s~(-1)),功率耗散率值较为适中,为0.24~0.35,此时材料具有良好的塑性,适合进行热加工变形。综合加工图以及微观组织观察结果,获得了复合材料热变形的最佳工艺参数:变形温度为450~490℃、应变速率为0.01~0.10 s~(-1)。  相似文献   

19.
采用真空感应熔炼法制备了医用Ti-50. 7%Ni合金(原子数分数), 测试了铸态合金的成分、相变点、微观组织和硬度, 并采用Gleeble-3800热模拟实验机在变形温度750~950℃、应变速率0. 001~1 s-1, 应变量为0. 5的条件下对Ni-Ti合金进行高温压缩变形, 分析其流动应力变化规律, 建立了高温塑性变形本构关系和热加工图.结果表明: 当变形温度减小或应变速率增大时, Ni-Ti合金的流动应力会随之增大.应变速率为1 s-1时, 合金的真应力-真应变曲线呈现出锯齿状特征.根据热加工图, 获得了Ni-Ti合金的加工安全区和流变失稳区, 进而确定其合理的热变形温度范围为820~880℃, 真应变速率低于0. 1 s-1.从而为制定镍钛合金的锻造工艺参数提供理论和数据基础.   相似文献   

20.
利用Gleeble-3800热模拟试验机对纯镍N6在变形温度800~1100℃,应变速率5~40 s-1,应变量70%条件下进行了高温塑性变形压缩试验,分析纯镍N6高温高应变速率热变形行为,得到了材料在不同变形参数条件下的组织变化规律及流变应力变化曲线,利用动态材料模型绘制出了纯镍N6在不同应变条件下的热加工图.通过对组织及热加工图的分析研究,得出变形温度为1000~1100℃,应变速率为5~7 s-1或20~40 s-1以及变形温度为800~900℃,应变速率为5~10 s-1为纯镍N6材料高温高应变速率热变形的两个合理变形参数区间,在参数区间内N6组织均匀;而流变失稳区变形参数条件下得到的组织比较紊乱,晶粒大小不一.纯镍N6热变形后的晶粒尺寸随变形温度升高及应变速率减小而增大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号