首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Klaus Eder 《Lipids》1999,34(7):717-725
This study was carried out to investigate the effects of a dietary oxidized oil on lipid metabolism in rats, particularly the desaturation of fatty acids. Two groups of rats were fed initially for a period of 35 d diets containing 10% of either fresh oil or thermally treated oil (150°C, 6d). The dietary fats used were markedly different for lipid peroxidation products (peroxide value: 94.5 vs. 3.1 meq O2/kg; thiobarbituric acid-reactive substances: 230 vs. 7 μmol/kg) but were equalized for their fatty acid composition by using different mixtures of lard and safflower oil and for tocopherol concentrations by individual supplementation with dl-α-tocopherol acetate. In the second period which lasted 16 d, the same diets were supplemented with 10% linseed oil to study the effect of the oxidized oil on the desaturation of α-linolenic acid. During the whole period, all the rats were fed identical quantities of diet by a restrictive feeding system in order to avoid a reduced food intake in the rats fed the oxidized oil. Body weight gains and food conversion rates were only slightly lower in the rats fed the oxidized oil compared to the rats fed the fresh oil. Hence, the effects of lipid peroxidation products could be studied without a distortion by a marked reduced food intake and growth. To assess the rate of fatty acid desaturation, the fatty acid composition of liver and heart total lipids and phospholipids was determined and ratios between product and precursor of individual desaturation reactions were calculated. Rats fed the oxidized oil had reduced ratios of 20∶4n−6/18∶2n−6, 20∶5n−3/18∶3n−3, 20∶4n−6/20∶3n−6, and 22∶6n−3/22∶5n−3 in liver phospholipids and reduced ratios of 20∶4n−6/18∶2n−6, 22∶5n−3/18∶3n−3, and 22∶6n−3/18∶3n−3 in heart phospholipids. Those results suggest a reduced rate of desaturation of linoleic acid and α-linolenic acid by microsomal Δ4-, Δ5-, and Δ6-desaturases. Furthermore, liver total lipids of rats fed the oxidized oil exhibited a reduced ratio between total monounsaturated fatty acids and total saturated fatty acids, suggesting a reduced Δ9-desaturation. Besides those effects, the study observed a slightly increased liver weight, markedly reduced tocopherol concentrations in liver and plasma, reduced lipid concentrations in plasma, and an increased ratio between phospholipids and cholesterol in the liver. Thus, the study demonstrates that feeding an oxidized oil causes several alterations of lipid and fatty acid metabolism which might be of great physiologic relevance.  相似文献   

2.
The activities of key enzymes in glycerolipid biosynthesis and fatty acid oxidation were compared using CoA esters of naturally occurring positional isomers of octadecatrienoic acids (18∶3) as the substrates. The trienoic acids employed were 9,12,15–18∶3 (α-18∶3), 6,9,12–18∶3 (γ-18∶3), and 5,9,12–18∶3 (pinolenic acid which is a fatty acid contained in pine seed oil, po-18∶3). The activities of microsomal glycerol 3-phosphate acyltransferase obtained with various 18∶3 were only slightly lower than or comparable with those obtained with palmitic (16∶0), oleic (18∶1), and linoleic (18∶2) acids. Mitochondrial glycerol 3-phosphate acyltransferase was exclusively specific for saturated fatty acyl-CoA. The activities of microsomal diacylglycerol acyltransferase measured with various polyunsaturated fatty acyl-CoAs were significantly lower than those obtained with 16∶0- and 18∶1-CoAs. Among the polyunsaturated fatty acids, γ-18∶3 gave the distinctly low activity. The Vmax values of the mitochondrial carnitine palmitoyltransferase I were significantly higher with α-18∶3 and po-18∶3 but not γ-18∶3, than with 16∶0 and 18∶2, while the apparent Km values were the same irrespective of the types of acyl-CoA used except for the distinctly low value obtained with γ-18∶3. The response to an inhibitor of the acyltransferase reaction, malonyl-CoA, was appreciably exaggerated with 18∶2, α-18∶3, and po-18∶3 more than with 16∶0 and 18∶1. However, the response with γ-18∶3 was the same as with 16∶0. Thus, some of glycerolipid biosynthesis and fatty acid oxidation enzymes could discriminate not only the differences in the degree of unsaturation of fatty acids but also the positional distribution of double bond among the naturally occurring 18∶3 acids.  相似文献   

3.
β-Oxidation of conjugated linoleic acid isomers and linoleic acid in rats   总被引:1,自引:0,他引:1  
To assess the oxidative metabolism of conjugated linoleic acid (CLA) isomers, rats were force-fed 1.5–2.6 MBq of [1-14C]-linoleic acid (9c,12c-18∶2),-rumenic acid (9c,11t-18∶2), or-10trans, 12cis-18∶2 (10t, 12c-18∶2), and 14CO2 production was monitored for 24 h. The animals were then necropsied and the radioactivity determined in different tissues. Both CLA isomers were oxidized significantly more than linoleic acid. Moreover, less radioactivity was recovered in most tissues after CLA intake than after linoleic acid intake. The substantial oxidation of CLA isomers must be considered when assessing the putative health benefits of CLA supplements.  相似文献   

4.
The fate of labeled palmitate, stearate, and acetate administered to the yellow clam,Mesodesma mactroides, was investigated. 1-14C palmitic and 1-14C stearic acids were oxidized to CO2 to a limited extent. They were mainly incorporated in diacylglycerols and triacylglycerols and were converted to higher homologs. After administration, palmitic acid was converted to stearic and oleic acids, whereas administered stearic acid was converted to 18∶1, 18∶2, 20∶1, and 20∶2 acids. Labeled acetate was readily included by the clam in 12∶0, 14∶0, 14∶1, 15∶0, 16∶1, 16∶1, 16∶2, 18∶2, 18∶1, 18∶2, 20∶1, 20∶2, and 20∶3 acids.  相似文献   

5.
Rates of turnover and oxidation of plasma free fatty acid (FFA) were determined in unanesthetized dogs during exercise, acute cold exposure and anaphylactic shock, with the aid of a technique involving the continuous infusion of albumin-bound palmitate-1-14C and the simultaneous measurement of O2 uptake, CO2 output and the specific activities of CO2 and FFA. During exercise in normal untrained dogs, plasma FFA supplied 20–30% of the energy, whereas in trained dogs 70–90% of the energy was derived from the FFA oxidation. In resting dogs at room temperature the plasma FFA level was 0.58 μEq/ml with a turnover rate of 18.6 μEq/kg/min of which 22% was immeditely oxidized and contributed 29% to the exhaled CO2. These results were compared with data obtained in pancreatectomized and thyroidectomized dogs. Acute cold exposure (temperature 4–5C) increased the FFA level and turnover rate to 1.02 μEq/ml and 28.0 μEq/kg/min, respectively, of which 33% was immedaitely oxidized, contributing 46% to the exhaled CO2. During anaphylactic shock, blood lactate increased, FFA level and turnover rate were reduced, and the fraction which was immediately oxidized was depressed markedly, i.e., 3–9% of FFA turnover. Sodium lactate infusion, which induces a blood lactate level comparable to that seen in anaphylaxis or nicotinic acid infusion, markedly decreased the level and turnover rate of FFA. However the fraction of turnover oxidized remained the same as during the preinfusion period (range of 21–40%. Exercise or the administration of norepinephrine during anaphylactic shock provided results suggesting that endogenous lactic acid interferes with FFA oxidation, whereas exogenous, lactate had no effect on this oxidation.  相似文献   

6.
The effect of diets high (15%) in saturated (beef tallow) or polyunsaturated (corn or cottonseed oil) fatty acids on the fatty acid composition of sphingomyelin from canine erythrocytes and platelets and sphingomyelin and neutral glycosphingolipids of swine erythrocytes was determined. Sphingolipids of platelets and erythrocytes from animals fed high levels of corn or cottonseed oil exhibited a dramatic alteration in their fatty acid composition, most notable of which was a 50% reduction in nervonic acid (24∶1ω9) as compared to levels observed in control or tallow fed animals. This decrease was compensated for by a quantitatively similar increase in a C24 dienoic acid. The long chain dienoic acid was isolated by silver nitrate thin layer chromatography and determined by analysis of its oxidation products to be Δ15, 18-tetracosadienoic acid (24∶2ω6). When the animals were fed the diets high in polyunsaturates, the 24∶2ω6 represented 13, 20, and 9% of the sphingomyelin fatty acids from canine erythrocytes, platelets, and swine erythrocytes, respectively, and 5% of the neutral glycosphingolipid fatty acids of swine erythrocytes. In contrast, the 24∶2ω6 represented less than 4% of the total cellular sphingolipid fatty acids in animals fed the control or high beef tallow diets. The 24∶1ω9 in the sphingolipids of the animals fed the polyunsaturated diet was roughly equal to that of 24∶2ω6, whereas in the sphingolipids of animals fed the control or saturated fat (beef tallow) diet, the 24∶1ω9 was twice these values. Since sphingomyelin is a membrane component, the increase in unsaturation (24∶2ω6) in its fatty acid moiety induced by dietary polyunsaturates may affect membrane fluidity and may alter membrane properties. Dr. Nelson’s current affiliation is with the Lipid Metabolism Branch, Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute.  相似文献   

7.
Purified prostaglandin endoperoxides (PGG2 and PGH2) and hydroperoxides (15-OOH-PGE2) as well as fatty acid hydroperoxides (12-OOH-20∶4, 15-OOH-20∶4, and 13-OOH-18∶2) were examined as effectors of soluble splenic cell guanylate cyclase activity. The procedures employed for the preparation and purification of these components circumvented the use of diethyl ether which obscured effects of lipid effectors because of contaminants presumed to be ether peroxides which were stimulatory to the cyclase. Addition of prostaglandin endoperoxides or fatty acid hydroperoxides to the reaction mixture led to a time-dependent activation of guanylate cyclase activity; 2.5-to 5-fold stimulation was seen during the first 6 min. The degree of stimulation and rate of activation were dependent on the concentration of the fatty acid effector; when initial velocities (6 min) were assessed, half maximal stimulation was achieved in the range of 2 to 3 μM. However, by extending the incubation time to 90 min, similar maximal increases in specific activity could be achieved with 3 or 10 μM PGG2 or PGH2. Activation of guanylate cyclase upon addition of prostaglandin endoperoxides or fatty acid hydroperoxides was prevented or reversed by the thiol reductants dithiothreitol (3 to 5 mM) or gluthathione (10 to 15 mM). Na2S2O4, not known as an effective reducing agent of disulfieds, prevented but was relatively ineffective in reversing activation after it had been induced by PGG2. Pretreatment of the enzyme preparation with increasing concentrations of N-ethyl-maleimide in the range of 0.01 to 1.0 mM prevented activation by PGG2 without effecting basal guanylate cyclase activity. These observations indicate that fatty acid hydroperoxides and prostaglandin endoperoxides promote activation of the cyclase by oxidation of enzyme-related thiol functions. In contrast, PGE2, PGF, hydroxy fatty acids (13-OH-18∶2, 12-OH-20∶4) as well as saturated (18∶0), monoenoic (18∶1), dienoic (18∶2), and tetraenoic (20∶4) fatty acids were ineffective in promoting cyclase activation in the range of 1 to 10 μM. Studies to identify the species of the rapidly metabolized prostaglandin endoperoxides that serve as effectors of the cyclase indicated that PGG2 but not 15-OOH-PGE2 (the major buffer-rearrangement product of PGG2) is most likely an activator. In the case of PGH2 a rapidly generated (30 sec) metabolite of PGH2 was found which contained a hydroperoxy or endoperoxy functional group and was equally as effective as PGH2 as an apparent activator of the enzyme. The combined effects of PGG2 and dehydroascorbic acid, another class of activator, exhibited additivity with respect to the rate at which the time-dependent activation was induced. These results suggest that activation of soluble guanylate cyclase from splenic cells can be achieved by the oxidation of sulfhydryls that may be associated with specific hydrophobic sites of the enzyme or a related regulatory component.  相似文献   

8.
Euglena gracilis was cultured under both heterotrophic and phototrophic growth conditions using ethanol, glucose or CO2 as the major carbon source. Total fatty acid analyses indicated that ethanol produced more highly unsaturated acids than did glucose under both growth conditions. Growth in the light on CO2 yielded a very high content of 18∶3, 16∶3 and 16∶4 (33%), compared to ethanol (11%) or glucose (10%). These two preformed carbon sources enhanced the content of the C20 and C22 polyenes compared to CO2, and growth in the dark on to CO2, and growth in the dark on ethanol caused a further increase in these polyenes. Growth in the dark on glucose caused only a slight increase of the C20 and C22 polyenes compared to growth in the light on this carbon source. When the fatty acid patterns of the two dark-grown heterotrophs were compared, two observations were quite evident. First, there was a two-fold increase in the saturated acids in the cells grown on glucose. This was largely due to myristic acid. Second, the C20 and C22 polyenes were almost twice as concentrated in the cells grown on ethanol.  相似文献   

9.
Thirteen-day old rats were given intracranial injections of 1-14C linolenic acid (allcis 9,12,15 octa decatrienoic acid) and were sacrificed after 8 hr. Analysis of brain fatty acids showed that 16∶0, 18∶0, 18∶1, 18∶3, 20∶3, 20∶4, 20∶5, 22∶5, and 22∶6 were labeled. The total fatty acid methyl esters were separated into classes according to degree of unsaturation on a AgNO3∶SiO2 impregnated plate. The bands were scraped off and the eluted fatty acids were first analyzed by radiogas liquid chromatography and then subjected to reductive ozonolysis to determine double bond position. The saturated acids, 16∶0, and 18∶0, as well as the mono-unsaturated 18∶1, must have been formed from radioactive acetate produced by β oxidation of the injected linolenate. Among the polyunsaturated fatty acids, the triene fraction was characterized and identified as 18∶3 ε3 (Δ9,12,15), the starting material, and 20∶3 ω3 (Δ11,14,17); the tetraene fraction was identified as 20∶4 ω3 (Δ8,11,14,17); the pentaene fraction was identified as 20∶5 ω3 (Δ5,8,11,14,17) and 22∶5 ω3 (Δ7,10,13,16,19); and, finally, the hexaene fraction was shown to be 22∶6 ω3 (Δ4,7,10,13,16,19). The biosynthesis of these ω3 family fatty acids in the brain in situ is discussed.  相似文献   

10.
Release of specific polyunsaturated fatty acids from cell membranes may have a significant implication in biological function, considering the involvement of various fatty acids in cell signal transduction. In the present study, release of polyunsaturated fatty acids from rat brain synaptosomes by endogeneous synaptosomal lipase activity was examined in comparison to that by cobra venom phospholipase A2 (Naja naja naja). Cobra venom phospholipase A2 (Naja naja naja) preferentially hydrolyzed docosahexaenoic acid (22∶6n−3) from both synaptosomes and lipid muxtures containing similar classes of lipids commonly found in the brain. Arachidonic acid (20∶4n−6) and oleic acid (18∶1n−9) were also hydrolyzed; however, monoene species was hydrolyzed slower than were polyenoic species in synaptosomes. Phosphatidylethanolamine was the most preferred phospholipid class for release of 22∶6n−3 fatty acid from both lipid mixtures and synaptosomes. In contrast to hydrolysis by cobra venom phospholipase A2, endogenous synaptosomal lipase activity preferentially hydrolyzed 20∶4−6 from rat brain synaptosomes, despite the high abundance of 22∶6n−3 in synaptosomal membranes. Preferential release of 20∶4n−6 was observed over a wide range of pH values and calcium concentrations. Synaptosomal 22∶6 species appeared to be resistant to hydrolysis even after stimulation with various agents such as phorbolmyristate, suggesting that physiological importance of 22∶6−3 in neuronal membranes may not be as the release fatty acid.  相似文献   

11.
Human milk traicylglycerols (TAG) were analyzed by ammonia negative ion chemical ionization tandem mass spectrometry. The deprotonated molecular ions of triacylglycerols were fractionated at the first mass spectrometry (MS) stage. Twenty-nine of the deprotonated TAG ions were further analyzed based on their collisionally activated (CA) spectra. The tandem MS analysis covered eleven major acyl carbon number fractions, two of which contained odd carbon number fatty acids. Fatty acids of 28 different molecular weights were recorded from the daughter spectra. Hexadecanoic acid was present in all CA spectra, octadecenoic acid in the CA spectra of all mono- and higher unsaturated TAG, and octadecadienoic acid in the CA spectra of all di- and higher unsaturated TAG. The major fatty acid combinations in triacylglycerols were: with 0 double bonds (DB), 12∶0/12∶0/16∶0; with 1 DB, 12∶0/16∶0/18∶1; with 2 DB, 16∶0/18∶1/18∶1; with 3 DB, 16∶0/18∶2/18∶1; with 4 DB, 18∶2/18∶1/18∶1; and with 5 DB, 18∶2/18∶2/18∶1; hexadecanoic acid typically occupied thesn-2 position. The most abundant TAG was shown to besn-18∶1–16∶0–18∶1, comprising about 10% of all triacylglycerols.  相似文献   

12.
The effect of dietary α-linolenic acid (18∶3n−3) and its ratio to linoleic acid (18∶2n−6) on platelet and plasma phospholipid (PL) fatty acid patterns and prostanoid production were studied in normolipidemic men. The study consisted of two 42-d phases. Each was divided into a 6-d pre-experimental period, during which a mixed fat diet was fed, and two 18-d experimental periods, during which a mixture of sunflower and olive oil [low 18∶3n−3 content, high 18∶2/18∶3 ratio (LO-HI diet)], soybean oil (intermediate 18∶3n−3 content, intermediate 18∶2/18∶3 ratio), canola oil (intermediate 18∶3n−3 content, low 18∶2/18∶3 ratio) and a mixture of sunflower, olive and flax oil [high 18∶3n−3 content, low 18∶2/18∶3 ratio (HI-LO diet)] provided 77% of the fat (26% of the energy) in the diet. The 18∶3n−3 content and the 18∶2/18∶3 ratio of the experimental diets were: 0.8%, 27.4; 6.5%, 6.9; 6.6%, 3.0; and 13.4%, 2.7, respectively. There were appreciable differences in the fatty acid composition of platelet and plasma PLs. Nevertheless, 18∶1n−9, 18∶2n−6 and 18∶3n−3 levels in PL reflected the fatty acid composition of the diets, although very little 18∶3n−3 was incorporated into PL. Both the level of 18∶3n−3 in the diet and the 18∶2/18∶3 ratio were important in influencing the levels of longer chain n−3 fatty acid, especially 20∶5n−3, in platelet and plasma PL. Production of 6-keto-PGF was significantly (P<0.05) higher following the HI-LO diet than the LO-HI diet although dietary fat source had no effect on bleeding time or thromboxane B2 production. The present study showed that both the level of 18∶3n−3 in the diet and its ratio to 18∶2n−6 were important in influencing long-chain n−3 fatty acid levels in platelet and plasma PL and that prostanoid production coincided with the diet-induced differences in PL fatty acid patterns.  相似文献   

13.
Clofibrate administration significantly altered the amount and fatty acid composition of lipids in mouse liver. The net content of phospholipids (PL) increased and that of triacylglycerols (TG) decreased concomitantly with liver enlargement in mice treated for two weeks with this drug (0.5% w/w in the food). The highest increase among PL was in phosphatidylcholine; other components either showed lower increases or, as in the case of sphingomyelin and the plasmalogens, decreased. In all lipid classes the treatment resulted in altered ratios between major saturates, between saturates and monoenes, and between major polyenes. Among these, 20∶3n–6 and 22∶5n–3 increased several-fold, and the 20∶3n–6/20∶4n–6 and 22∶5n–3/22∶6n–3 ratios increased due to a more active formation of the precursors than of the corresponding products. This change affected all glycerolipid classes. Liver sphingomyelin showed a relative enrichment in monoenoic fatty acids like 22∶1 and 24∶1, caused by a net decrease in the amount of saturates, particularly 22∶0 and 24∶0. The stimulated membrane proliferation imposed by clofibrate must increase phospholipid synthesis and, hence, the need for fatty acids. The results suggest that these demands are met mostly by TG acyl groups, either directly or after oxidation/desaturation processes. This was apparently the case for the polyenoic fatty acids of the n-6 and n-3 series. The longer chain (C22 and C24) components decreased, suggesting that their oxidation was stimulated to provide part of the required (C20 and C22) polyenes.  相似文献   

14.
Primary cultures of smooth muscle cells were established from the medial layer of guinea pig aorta. Cells at passage level 4 were treated with different series of fatty acids belonging to the n-9, n-6 and n-3 families. Lipid peroxidation was measured by the thiobarbituric acid assay and prostaglandin biosynthesis was measured by the radioimmunoassay of PGE and 6-keto-PGF. Cell proliferation was estimated from the total cell number of cultures seeded at low density. 18∶1(n-9) did not form lipid peroxides and this fatty acid stimulated cell proliferation. All fatty acids which generated lipid peroxides inhibited cell proliferation, but inhibition was correlated with the degree of lipid peroxidation only in the n-9 fatty acid family. 22∶4(n-6) and 22∶6(n-3) inhibited prostaglandin biosynthesis. 18∶2(n-6), 18∶2(n-9), 18∶3(n-3), 20∶2(n-9), 20∶3(n-3) and 20∶5(n-3) had no effect on prostaglandin biosynthesis. 18∶3(n-6), 20∶3(n-6) and 20∶4(n-6) generated prostaglandins. 20∶3(n-9) generated metabolites with prostaglandin immunoreactivity. The inhibition of cell proliferation did not correlate with enhanced or inhibited prostaglandin synthesis. The inhibition of cell proliferation was related to the structures of the different polyunsaturated fatty acid families decreasing in the order n-9>n-6>n-3. Eicosatrienoic acids were the most effective inhibitors of cell proliferation in each fatty acid family and 20∶3(n-9) was the most potent eicosatrienoic acid. These data show that specific as yet unrecognized products of fatty acid metabolism are responsible for the inhibition of cell proliferation. Fatty acids are designated by the number of carbon atoms: number of double bonds and the position of the first double bond from the methyl terminus of the acyl chain is noted in parenthesis: 18∶1(n-9), 9-octadecenoic acid; 18∶2(n-9), 6,9-octadecadienoic acid; 18∶2(n-6), 9,12-octadecadienoic acid; 18∶3(n-6), 6,9,12-octadecatrienoic acid, 18∶3(n-3), 9,12,15-octadecatrienoic acid; 20∶2(n-9), 8,11-eicosadienoic acid; 20∶3(n-9), 5,8,11-eicosatrienoic acid; 20∶3(n-6), 8,11,-14-eicosatrienoic acid, 20∶4(n-6), 5,8,11,14-eicosatetraenoic acid; 20∶5(n-3), 5,8,11,14,17-eicosapentaenoic acid; 22∶4-(n-6), 7,10,13,16-docosatetraenoic acid, 22∶6(n-3), 4,7,10,13,16,19-docosahexaenoic acid. Presented at the 73rd AOCS annual meeting, Toronto, Canada, May 1982.  相似文献   

15.
Five ganglioside fractions from bovine adrenal medulla were analyzed with respect to their fatty acid and long chain base compositions. The five fractions included two hematosides and three hexasamine-containing species, the latter having chromatographic properties comparable to the major gangliosides of brain. The fatty acid compositions of all five were similar: 22∶0 was the most abundant, but significant amounts of 16∶0, 18∶0, 24∶0 and 24∶1 were also present. No hydroxy fatty acids were detected. The principal long chain base in each fraction was 4-sphingenine (sphingosine), with lesser amounts of the C16 and C17 homologues. Minor quantities of the corresponding saturated bases were also detected. These were identified by two gas liquid chromatography methods: (a) trimethylsilyl ether derivatives, (b) aldehydes formed by periodate oxidation of the long chain bases. No 4-eicosasphingenine (C20-sphingosine), characteristic of brain gangliosides, was found in any of the fractions. The results demonstrate that gangliosides of the adrenal medulla show tissue specificity in fatty acid and long chain base composition which is independent of carbohydrate structure.  相似文献   

16.
The total lipid fatty acids from the white shrimpPenaeus setiferus were found to contain several unusual dienoic fatty acid species. These included two methylene-interrupted species: Δ11, 14-C18∶2 (18∶2ω4) and δ13, 16-C20∶2 (20∶2ω4). Also found were several non-methylene-interrupted dienoic fatty acids including δ7, 11 and Δ7, 13-C20∶2, Δ7, 13-C21∶2, Δ7, 13, Δ7, 15, Δ9, 13, Δ9, 15, and Δ7, 17-C22∶2. Many minor C20∶2 non-methylene-interrupted dienes were found but could not be unequivocally characterized.  相似文献   

17.
The total lipids and fatty acid composition ofEntomophthora coronata were determined. The fungus was grown on a chemically defined medium and a chemically nondefined medium (Sabouraud dextrose yeast extract) for a period of 26 days. The organism contained from 16.2% to 44.6% total lipids depending upon the days of growth. The major fatty acids were 12∶0 (5.5–9.0%), 13∶0 (1.2–8.2%), 14∶0 (33.5–43.5%), 16∶0 (9.7–13.9%), 18∶19 (20.4–22.4%), and 18∶29,12 (3.5–10.5%). Lesser amounts of 15∶0, 16∶1, 16∶2, 17∶0, 18∶0, two other 18∶2 (both having conjugated double bonds), 18∶36,9,12, another 18∶3 (conjugated double bonds), 20∶38,11,14, 20∶45,8,11,14, another 20∶4 (conjugated double bonds), and 24∶1 acids were found. Trace amounts of 20∶0, 20∶1, 20∶2, 22∶0 and 24∶0 were also present. The relative percentage of most of the fatty acids did not vary appreciably with growth. However, 18∶29,12 and 20∶45,8,11,14 increased with age of the chemically defined culture. Peak E (18∶2, conjugated double bonds) increased and 13∶0 and 18∶36,9,12 decreased with age of the chemically nondefined culture. The fatty acids were predominately saturated (56.9–69.1%) and contained a high percentage of shorter chain fatty acids (C 12 to C 15). The fatty acids of the chemically defined culture were more unsaturated than the Sabouraud culture and the unsaturation increased with age of the culture.  相似文献   

18.
This study examines the biohydrogenation and utilization of the C20 and C22 polyenoic fatty acids in ruminants. Eicosapentaenoic (20∶5n−3) and docosahexaenoic (22∶6n−3) acids were not biohydrogenated to any significant extent by rumen microorganisms, whereas C18 polyenoic fatty acids were extensively hydrogenated. The feeding of protected fish oil increased the proportion of 20∶5 from 1% to 13–18% and 22∶6 from 2% to 7–9% in serum lipids and there were reductions in the proportion of stearic (18∶0) and linoleic (18∶2) acids. The proportion of 20∶5 in muscle phospholipids (PL) increased from 1.5% to 14.7% and 22∶6 from 1.0% to 4.2%; these acids were not incorporated into muscle or adipose tissue triacylglycerols (TAG). In the total PL of muscle, the incorporated 20∶5 and 22∶6 substituted primarily for oleic (18∶1) and/or linoleic (18∶2) acid, and there was no consistent change in the porportion of arachidonic (20∶4) acid.  相似文献   

19.
Soy phosphatidylcholine (PC) has been separated into its major molecular species by reversephase high pressure liquid chromatography (HPLC). An aqueous methanol gradient was used that allowed detection of the various species by their absorbance at 206 nm. Oxidized species were detected by their absorbance at 234 nm and were resolved from the unoxidized species. This technique has been used to separate and purify unoxidized dilinoleyl phosphatidylcholine (di 18∶2 PC) from other species of soy PC and to monitor the autoxidation of an aqueous suspension of the purified di 18∶2 PC. Two oxidized products were formed from di 18∶2 PC. Further analysis showed that they were PC, but one of the products contained an oxidized and an unoxidized fatty acid; in the other product, both fatty acids were oxidized. Present in part at FASEB 63rd Annual Meeting, Dallas, Texas, April 1979.  相似文献   

20.
The formation of complexes between thiamine disulfide (TDS) orO-acetyl thiamine disulfide (O-acetyl TDS) and fatty acid or fatty acid methyl ester in methanol has been studied by fluorescence quenching and13C NMR relaxation (T1) measurements. The association constants (K-values) of TDS andO-acetyl TDS with fatty acids (from 11∶0 to 18∶0, and 18∶1, 18∶2, 18∶3 and 20∶4) and fatty acid methyl esters have been determined. These values do not depend on either the number of carbon atoms or the degree of unsaturation of the fatty acid. The K-values of TDS andO-acetyl TDS with fatty acid were 7.8 M−1 and 5.1 M−1, respectively. The K-values of TDS andO-acetyl TDS with fatty acid methyl ester were very small. These results show that the-OH moiety in TDS and the-COOH moiety in the fatty acid are necessary for formation of the complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号