首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a technical, economic and environmental analysis is carried out for the estimation of the optimal option scenario for the Cyprus's future power generation system. A range of power generation technologies integrated with carbon capture and storage (CCS) were examined as candidate options and compared with the business as usual scenario. Based on the input data and the assumptions made, the simulations indicated that the integrated gasification combined cycle (IGCC) technology with pre-combustion CCS integration is the least cost option for the future expansion of the power generation system. In particular, the results showed that for a natural gas price of 7.9US$/GJ the IGCC technology with pre-combustion CCS integration is the most economical choice, closely followed by the pulverized coal technology with post-combustion CCS integration. The combined cycle technology can, also, be considered as alternative competitive technology. The combined cycle technologies with pre- or post-combustion CCS integration yield more expensive electricity unit cost. In addition, a sensitivity analysis has been also carried out in order to examine the effect of the natural gas price on the optimum planning. For natural gas prices greater than 6.4US$/GJ the least cost option is the use of IGCC technology with CCS integration. It can be concluded that the Cyprus's power generation system can be shifted slowly towards the utilization of CCS technologies in favor of the existing steam power plants in order not only to lower the environmental emissions and fulfilling the recent European Union Energy Package requirements but also to reduce the associated electricity unit cost.  相似文献   

2.
The long-term assessment of new electricity generation was performed for various long-run policy scenarios taking into account two main criteria: private costs and external GHG emission costs. Such policy oriented power generation technologies assessment based on carbon price and private costs of technologies can provide information on the most attractive future electricity generation technologies taking into account climate change mitigation targets and GHG emission reduction commitments for world regions.Analysis of life cycle GHG emissions and private costs of the main future electricity generation technologies performed in this paper indicated that biomass technologies except large scale straw combustion technologies followed by nuclear have the lowest life cycle GHG emission. Biomass IGCC with CO2 capture has even negative life cycle GHG emissions. The cheapest future electricity generation technologies in terms of private costs in long-term perspective are: nuclear and hard coal technologies followed by large scale biomass combustion and biomass CHPs. The most expensive technologies in terms of private costs are: oil and natural gas technologies. As the electricity generation technologies having the lowest life cycle GHG emissions are not the cheapest one in terms of private costs the ranking of technologies in terms of competitiveness highly depend on the carbon price implied by various policy scenarios integrating specific GHG emission reduction commitments taken by countries and climate change mitigation targets.  相似文献   

3.
Joule Bergerson  Lester Lave   《Energy Policy》2007,35(12):6225-6234
Using four times as much coal in 2050 for electricity production need not degrade air quality or increase greenhouse gas emissions. Current SOx and NOx emissions from the power sector could be reduced from 12 to less than 1 and from 5 to 2 million tons annually, respectively, using advanced technology. While direct CO2 emissions from new power plants could be reduced by over 87%, life cycle emissions could increase by over 25% due to the additional coal that is required to be mined and transported to compensate for the energy penalty of the carbon capture and storage technology. Strict environmental controls push capital costs of pulverized coal (PC) and integrated coal gasification combined cycle (IGCC) plants to $1500–1700/kW and $1600–2000/kW, respectively. Adding carbon capture and storage (CCS) increases costs to $2400–2700/kW and $2100–3000/kW (2005 dollars), respectively. Adding CCS reduces the 40–43% efficiency of the ultra-supercritical PC plant to 31–34%; adding CCS reduces the 32–38% efficiency of the GE IGCC plant to 27–33%. For IGCC, PC, and natural gas combined cycle (NGCC) plants, the carbon dioxide tax would have to be $53, $74, and $61, respectively, to make electricity from a plant with CCS cheaper. Capturing and storing 90% of the CO2 emissions increases life cycle costs from 5.4 to 11.6 cents/kWh. This analysis shows that 90% CCS removal efficiency, although being a large improvement over current electricity generation emissions, results in life cycle emissions that are large enough that additional effort is required to achieve significant economy-wide reductions in the US for this large increase in electricity generation using either coal or natural gas.  相似文献   

4.
There is wide public debate about which electricity generating technologies will best be suited to reduce greenhouse gas emissions (GHG). Sometimes this debate ignores real-world practicalities and leads to over-optimistic conclusions. Here we define and apply a set of fit-for-service criteria to identify technologies capable of supplying baseload electricity and reducing GHGs by amounts and within the timescale set by the Intergovernmental Panel on Climate Change (IPCC). Only five current technologies meet these criteria: coal (both pulverised fuel and integrated gasification combined cycle) with carbon capture and storage (CCS); combined cycle gas turbine with CCS; Generation III nuclear fission; and solar thermal backed by heat storage and gas turbines. To compare costs and performance, we undertook a meta-review of authoritative peer-reviewed studies of levelised cost of electricity (LCOE) and life-cycle GHG emissions for these technologies. Future baseload electricity technology selection will be influenced by the total cost of technology substitution, including carbon pricing, which is synergistically related to both LCOE and emissions. Nuclear energy is the cheapest option and best able to meet the IPCC timetable for GHG abatement. Solar thermal is the most expensive, while CCS will require rapid major advances in technology to meet that timetable.  相似文献   

5.
刘晓立  张鲲  曾鸣 《水电能源科学》2013,31(4):226-228,244
根据国际能源机构(IEA)的评估标准选出合适的低碳基荷发电技术,分析了引入碳价格后发电成本和温室气体排放强度的变动情况,并研究碳定价机制对各发电技术相对竞争力的影响。结果表明,核电成本的排放量最低,竞争优势最大;太阳能热利用成本的排放量最高,相对竞争力最小。目前依靠碳捕捉与封存技术(CCS)的传统煤粉蒸汽锅炉发电(PFcoal/ CCS)、联合循环发电系统(IGCC/ CCS)、联合循环燃气涡轮(CCGT/ CCS)技术是有风险的策略。  相似文献   

6.
中国能源领域排放的二氧化碳主要来自煤炭,因此煤炭消费过程中的碳减排措施尤为重要。煤炭的主要用户是发电部门,基于应对气候变化的需要,煤电行业的低碳途径不得不考虑采用CCS技术。不论是新建燃煤电厂,还是今后在传统电厂改建过程中增设CCS设施已是大势所趋,预计多数仍将采用MEA法脱除烟气中二氧化碳这一成熟技术。由于MEA法技术经济指标不够先进,估计10~20年内必将出现更先进的脱二氧化碳工艺技术。传统的燃煤锅炉增加CCS的经济效益已经逊于IGCC-CCS,预计2020年后IGCC电厂将成为新建煤电厂的首选方案。20年后采用临氢气化炉与燃料电池FC发电相结合、把高温的热能和甲烷的化学能直接转化为电力的IGFC高效燃煤电厂或将成功应用,IGFC综合能量转化效率比IGCC相对高出1/2~3/4,发展前景不可低估。钢铁、水泥和化工等高耗煤工业部门可通过节能和采用CCS技术降低碳排放,其余用煤的工业部门和分散用户则应考虑节能或用天然气等低碳燃料替代,间接起到减排效果。预计2050年燃煤发电和高耗煤工业总计将排放二氧化碳4.6Gt,如果二氧化碳捕集量是2.9Gt,则净排放量为1.7Gt。加上其他难以捕集二氧化碳的工业、部门及民用煤排放二氧化碳1.0Gt,合计二氧化碳净排放量为2.7Gt(情景A)。如果采用更先进的技术和严格的节能减排措施,可减少煤炭消耗0.31Gt标煤,减少二氧化碳排放0.5Gt,使煤源二氧化碳净排放量减少到2.2Gt(情景B)。无论哪种情景,实施CCS的任务都十分艰巨。  相似文献   

7.
The establishment of an emissions trading scheme (ETS) in China creates the potential for a “least cost” solution for achieving the greenhouse gas (GHG) emissions reductions required for China to meet its Paris Agreement pledges. China has pledged to reduce CO2 intensity by 60–65% in 2030 relative to 2005 and to stop the increase in absolute CO2 emissions around 2030. In this series of studies, we enhance the MIT Economic Projection and Policy Analysis (EPPA) model to include the latest assessments of the costs of power generation technologies in China to evaluate the impacts of different potential ETS pathways on deployment of carbon capture and storage (CCS) technology. This paper reports the results from baseline scenarios where power generation prices are assumed to be homogeneous across the country for a given mode of generation. We find that there are different pathways where CCS might play an important role in reducing the emission intensity in China's electricity sector, especially for low carbon intensity targets consistent with the ultimate goals of the Paris Agreement. Uncertainty about the exact technology mix suggests that decision makers should be wary of picking winning technologies, and should instead seek to provide incentives for emission reductions. While it will be challenging to meet the CO2 intensity target of 550 g/kWh for the electric power sector by 2020, multiple pathways exist for achieving lower targets over a longer timeframe. Our initial analysis shows that carbon prices of 35–40$/tCO2 make CCS technologies on coal-based generation cost-competitive against other modes of generation and that carbon prices higher than 100$/tCO2 favor a major expansion of CCS. The next step is to confirm these initial results with more detailed modeling that takes into account granularity across China's energy sector at the provincial level.  相似文献   

8.
The hikes in hydrocarbon prices during the last years have lead to concern about investment choices in the energy system and uncertainty about the costs for mitigation of greenhouse gas emissions. On the one hand, high prices of oil and natural gas increase the use of coal; on the other hand, the cost difference between fossil-based energy and non-carbon energy options decreases. We use the global energy model TIMER to explore the energy system impacts of exogenously forced low, medium and high hydrocarbon price scenarios, with and without climate policy. We find that without climate policy high hydrocarbon prices drive electricity production from natural gas to coal. In the transport sector, high hydrocarbon prices lead to the introduction of alternative fuels, especially biofuels and coal-based hydrogen. This leads to increased emissions of CO2. With climate policy, high hydrocarbon prices cause a shift in electricity production from a dominant position of natural gas with carbon capture and sequestration (CCS) to coal-with-CCS, nuclear and wind. In the transport sector, the introduction of hydrogen opens up the possibility of CCS, leading to a higher mitigation potential at the same costs. In a more dynamic simulation of carbon price and oil price interaction the effects might be dampened somewhat.  相似文献   

9.
This paper examines the global impacts of a policy that internalizes the external costs (related to air pollution damage, excluding climate costs) of electricity generation using a combined energy systems and macroeconomic model. Starting point are estimates of the monetary damage costs for SO2, NOX, and PM per kWh electricity generated, taking into account the fuel type, sulfur content, removal technology, generation efficiency, and population density. Internalizing these externalities implies that clean and advanced technologies increase their share in global electricity production. Particularly, advanced coal power plants, natural gas combined cycles, natural gas fuel cells, wind and biomass technologies gain significant market shares at the expense of traditional coal- and gas-fired plants. Global carbon dioxide emissions are lowered by 3% to 5%. Sulfur dioxide emissions drop significantly below the already low level. The policy increases the costs of electricity production by 0.2 (in 2050) to 1.2 € cent/kWh (in 2010). Gross domestic product losses are between 0.6% and 1.1%. They are comparatively high during the initial phase of the policy, pointing to the need for a gradual phasing of the policy.  相似文献   

10.
Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming over the coming decades. The key challenges for achieving this goal are carbon emission trading and electricity sector regulation, which are also the major components of the carbon and electricity markets, respectively. In this paper, a joint electricity and carbon market model is proposed to investigate the relationships between electricity price, carbon price, and electricity generation capacity, thereby identifying pathways toward a renewable energy transition under the transactional energy interconnection framework. The proposed model is a dynamically iterative optimization model consisting of upper- level and lower-level models. The upper-level model optimizes power generation and obtains the electricity price, which drives the lower-level model to update the carbon price and electricity generation capacity. The proposed model is verified using the Northeast Asia power grid. The results show that increasing carbon price will result in increased electricity price, along with further increases in renewable energy generation capacity in the following period. This increase in renewable energy generation will reduce reliance on carbon-emitting energy sources, and hence the carbon price will decline. Moreover, the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal power generation. Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and further realize the emission reduction targets in 2030-2050. It eases the stress of realizing the energy transition because of the less urgency to install additional renewable energy capacity.  相似文献   

11.
Natural gas has significant potential carbon benefits over coal when used for electricity generation, but these benefits can be offset by emissions of fugitive methane or delays in the adoption of near-zero carbon technologies. We analyze the time-evolution of radiative forcing from both natural gas and coal-based electricity generation by calculating average radiative forcing over an interval of time from greenhouse gas emissions under a range of assumptions for fugitive methane leakage, electricity generation efficiency, and delays in the adoption of near-zero carbon technologies. We find that leakage rates of between 5.2% and 9.9% are required for natural gas to result in greater mean forcing than coal over the next 100 years. We show that natural gas infrastructure with modest leakage could remain in place for 1.5–2.4 times the time interval that coal generation would have persisted prior to replacement with near-zero carbon technologies before the climate benefits of replacing coal with natural gas are negated. Natural gas can serve a viable bridge away from coal-based generation if avoiding longer-term climate impacts is prioritized, fugitive methane emissions are minimized, and the large-scale transition to near-zero carbon alternatives is unlikely to happen in the near-term.  相似文献   

12.
Integration of biomass energy technologies with carbon capture and sequestration could yield useful energy products and negative net atmospheric carbon emissions. We survey the methods of integrating biomass technologies with carbon dioxide capture, and model an IGCC electric power system in detail. Our engineering process model, based on analysis and operational results of the Battelle/Future Energy Resources Corporation gasifier technology, integrates gasification, syngas conditioning, and carbon capture with a combined cycle gas turbine to generate electricity with negative net carbon emissions. Our baseline system has a net generation of 123 MWe, 28% thermal efficiency, 44% carbon capture efficiency, and specific capital cost of 1,730 $ kWe−1. Economic analysis suggests this technology could be roughly cost competitive with more conventional methods of achieving deep reductions in CO2 emissions from electric power. The potential to generate negative emissions could provide cost-effective emissions offsets for sources where direct mitigation is expected to be difficult, and will be increasingly important as mitigation targets become more stringent.  相似文献   

13.
Australia's energy system faces a number of environmental challenges and chief among them is reducing greenhouse gas emissions. In the electricity sector, the Australian government has began implementing policies, which require greater use of gas and renewables based technologies. In this study, we simulate the optimal shares of several electricity generation technologies for Australia under a policy of greenhouse gas mitigation. In doing so, we seek to determine the likely technological investment paths over the next two decades and consider the sensitivity of those projections to assumptions regarding technological change, resource scarcity and economies or diseconomies of scale.  相似文献   

14.
The CA-TIMES optimization model of the California Energy System (v1.5) is used to understand how California can meet the 2050 targets for greenhouse gas (GHG) emissions (80% below 1990 levels). This model represents energy supply and demand sectors in California and simulates the technology and resource requirements needed to meet projected energy service demands. The model includes assumptions on policy constraints, as well as technology and resource costs and availability. Multiple scenarios are developed to analyze the changes and investments in low-carbon electricity generation, alternative fuels and advanced vehicles in transportation, resource utilization, and efficiency improvements across many sectors. Results show that major energy transformations are needed but that achieving the 80% reduction goal for California is possible at reasonable average carbon reduction cost ($9 to $124/tonne CO2e at 4% discount rate) relative to a baseline scenario. Availability of low-carbon resources such as nuclear power, carbon capture and sequestration (CCS), biofuels, wind and solar generation, and demand reduction all serve to lower the mitigation costs, but CCS is a key technology for achieving the lowest mitigation costs.  相似文献   

15.
Electricity generation contributes a large proportion of the total greenhouse gas emissions in the United Kingdom (UK), due to the predominant use of fossil fuel (coal and natural gas) inputs. Indeed, the various power sector technologies [fossil fuel plants with and without carbon capture and storage (CCS), nuclear power stations, and renewable energy technologies (available on a large and small {or domestic} scale)] all involve differing environmental impacts and other risks. Three transition pathways for a more electric future out to 2050 have therefore been evaluated in terms of their life-cycle energy and environmental performance within a broader sustainability framework. An integrated approach is used here to assess the impact of such pathways, employing both energy analysis and environmental life-cycle assessment (LCA), applied on a ‘whole systems’ basis: from ‘cradle-to-gate’. The present study highlights the significance of ‘upstream emissions’, in contrast to power plant operational or ‘stack’ emissions, and their (technological and policy) implications. Upstream environmental burdens arise from the need to expend energy resources in order to deliver, for example, fuel to a power station. They include the energy requirements for extraction, processing/refining, transport, and fabrication, as well as methane leakage that occurs in coal mining activities – a major cotribution – and from natural gas pipelines. The impact of upstream emissions on the carbon performance of various low carbon electricity generators [such as large-scale combined heat and power (CHP) plant and CCS] and the pathways distinguish the present findings from those of other UK analysts. It suggests that CCS is likely to deliver only a 70% reduction in carbon emissions on a whole system basis, in contrast to the normal presumption of a 90% reduction. Similar results applied to other power generators.  相似文献   

16.
17.
This paper analyzes the potential contribution of carbon capture and storage (CCS) technologies to greenhouse gas emissions reductions in the U.S. electricity sector. Focusing on capture systems for coal-fired power plants until 2030, a sensitivity analysis of key CCS parameters is performed to gain insight into the role that CCS can play in future mitigation scenarios and to explore implications of large-scale CCS deployment. By integrating important parameters for CCS technologies into a carbon-abatement model similar to the EPRI Prism analysis (EPRI, 2007), this study concludes that the start time and rate of technology diffusion are important in determining emissions reductions and fuel consumption for CCS technologies. Comparisons with legislative emissions targets illustrate that CCS alone is very unlikely to meet reduction targets for the electric-power sector, even under aggressive deployment scenarios. A portfolio of supply and demand-side strategies is needed to reach emissions objectives, especially in the near term. Furthermore, model results show that the breakdown of capture technologies does not have a significant influence on potential emissions reductions. However, the level of CCS retrofits at existing plants and the eligibility of CCS for new subcritical plants have large effects on the extent of greenhouse gas emissions reductions.  相似文献   

18.
This report examines the impact of renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the U.S. to examine the impact of a variety of emissions caps—and RPS scenarios both individually and combined. The generation mix, carbon emissions, and electricity price are examined for various policy combinations simulated in the modeling.  相似文献   

19.
This paper describes results from a model of decision-making under uncertainty using a real options methodology, developed by the International Energy Agency (IEA). The model represents investment decisions in power generation from the perspective of a private company. The investments are subject to uncertain future climate policy, which is treated as an external risk factor over which the company has no control. The aims of this paper are to (i) quantify these regulatory risks in order to improve understanding of how policy uncertainty may affect investment behaviour by private companies and (ii) illustrate the effectiveness of the real options approach as a policy analysis tool. The study analysed firms’ investment options of coal- and gas-fired power plants and carbon capture and storage (CCS) technologies. Policy uncertainty is represented as an exogenous event that creates uncertainty in the carbon price. Our findings indicate that climate policy uncertainty creates a risk premium for power generation investments. In the case of gas- and coal-fired power generation, the risk premium would lead to an increase in electricity prices of 5–10% in order to stimulate investment. In the case of CCS, the risk premium would increase the carbon price required to stimulate investment by 16–37% compared to a situation of perfect certainty. The option to retrofit CCS acts as a hedge against high future carbon prices, and could accelerate investment in coal plant. This paper concludes that to minimise investment risks in low carbon technologies, policy-makers should aim to provide some long-term regulatory certainty.  相似文献   

20.
The energy used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the potential of building-scale alternative energy technologies to reduce demand and emissions while also shielding building owners from the risks associated with fluctuations in the price of natural gas and grid electricity. We analyze the monetary costs and benefits over the life cycle of five technologies (photovoltaic and wind electricity generation, solar air and water heating, and ground source heat pumps) over three audience or building types (homeowners, small businesses, large commercial and institutional entities). The analysis includes a Monte Carlo analysis to measure risk that can be compared to other investment opportunities. The results indicate that under government incentives and climate of Toronto, Canada, the returns are relatively high for small degrees of risks for a number of technologies. Ground source heat pumps prove to be exceptionally good investments in terms of their energy savings, emission, reductions, and economics, while the bigger buildings tend also to be better economic choices for the use of these technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号