首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-speed milling of hardened steels generates high cutting temperature and leads to detrimental effects on tool life and workpiece surface finish. In this paper, feasibility study of the minimum quantity lubrication (MQL) in high-speed end milling of NAK80 hardened steel by coated carbide tool was undertaken. Flood cooling and dry cutting experiments were conducted also for comparison. It is found that cutting under flood cooling condition results in the shortest tool life due to severe thermal cracks while the use of MQL leads to the best performance. MQL is beneficial to tool life both in the lower speed cutting and the higher speed cutting conditions. A less viscous oil of MQL is essential in high cutting speed so that cooling effect can be effective. SEM micrograph of the insert shows that the use of MQL in high-speed cutting can delay welding of chips on the tool and hence prolongs tool life as compared with dry cutting condition. The application of MQL also improves machined surface finish in high-speed milling of die steels.  相似文献   

2.
The researchers have worked on many facets of machining of hardened steel using different tool materials and came up with their own recommendations. Researchers have tried to investigate the effects of cutting parameters, tool materials, different coatings and tool geometry on different machinability aspects like, the tool life, surface roughness, cutting forces, chip morphology, residual stresses and the tool–chip interface temperature under dry and/or semi-dry and/or flood cooling environment during machining of hardened steels while many of them have ventured to characterize the wear phenomenon. Good amount of research has been performed on an analytical and/or numerical and/or empirical modeling of the cutting forces, tool–chip interface temperature, and tool wear under orthogonal/oblique cutting conditions during machining of hardened steels. This paper presents a comprehensive literature review on machining of hardened steels using coated tools, studies related to hard turning, different cooling methods and attempts made so far to model machining performance(s) so as to give proper attention to the various researcher works.  相似文献   

3.
Refrigerated cooling air cutting of difficult-to-cut materials   总被引:1,自引:1,他引:1  
One approach to enhance machining performance is to apply cutting fluids during cutting process. However, the use of cutting fluids in machining process has caused some problems such as high cost, pollution, and hazards to operator's health. All the problems related to the use of cutting fluids have urged researchers to search for some alternatives to minimize or even avoid the use of cutting fluids in machining operations. Cooling gas cutting is one of these alternatives. This paper investigates the effect of cooling air cutting on tool wear, surface finish and chip shape in finish turning of Inconel 718 nickel-base super alloy and high-speed milling of AISI D2 cold work tool steel. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry cutting, minimal quantity lubrication (MQL), cooling air, and cooling air and minimal quantity lubrication (CAMQL). For this research, composite refrigeration method was adopted to develop a new cooling gas equipment which was used to lower the temperature of compressed gas. The significant experimental results were: (i) application of cooing air and CAMQL resulted in drastic reduction in tool wear and surface roughness, and significant improvement in chip shape in finish turning of Inconel 718, (ii) in the high-speed milling of AISI D2, cooling air cutting presented longer tool life and slightly higher surface roughness than dry cutting and MQL. Therefore, it appears that cooling air cutting can provide not only environment friendliness but also great improvement in machinability of difficult-to-cut materials.  相似文献   

4.
The growing demands for high productivity of machining need use of high cutting velocity and feed rate. Such machining inherently produces high cutting temperature, which not only reduces tool life but also impairs the product quality. Application of cutting fluids changes the performance of machining operations because of their lubrication, cooling, and chip flushing functions. But the conventional cutting fluids are not that effective in such high production machining, particularly in continuous cutting of materials likes steels. Minimum quantity lubrication (MQL) presents itself as a viable alternative for turning with respect to tool wear, heat dissipation, and machined surface quality. This study compares the mechanical performance of MQL to completely dry lubrication for the turning of AISI-1040 steel based on experimental measurement of cutting temperature, chip reduction coefficient, cutting forces, tool wears, surface finish, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip–tool interaction, reduced tool wears, surface roughness, and dimensional deviation.  相似文献   

5.
Alumina based ceramic cutting tool is an attractive alternative for carbide tools in the machining of steel in its hardened condition. These ceramic cutting tools can machine with high cutting speed and produce good surface finish. The wear mechanism of these ceramic cutting tools should be properly understood for greater utilization. Two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina ceramic cutting tool are used for our investigation. The machinability of hardened steel was evaluated by measurements of tool wear, cutting forces and surface finish of the work piece. These alumina based ceramic cutting tool materials produce good surface finish in the machining of hardened steel. In this paper an attempt is made to analyse the important wear mechanisms like abrasive wear, adhesive wear and diffusion wear of these ceramic cutting tool materials and the performance of these ceramic cutting tools related to the surface finish is also discussed here.  相似文献   

6.
Applying cutting fluid in a metal-cutting process can reduce the rate of tool wear and improve surface quality. However, cutting fluid has negative effects on the working environment and the use of cutting fluid also increases the total production cost. Therefore, there is a need to reduce the use of cutting fluid during machining. To serve that purpose, a minimal-cutting-fluid technique was studied. In the present work the cutting fluid was applied in a form of a high-velocity, narrow, pulsed jet at a rate of 2 ml/min. The performance of machining with pulsed-jet application was studied in high-speed milling of hardened steel, compared to dry machining and machining with flood application. The results clearly show that compared to dry machining and machining with flood application, machining with pulsed-jet application lowers cutting forces, reduces tool wear, increases tool life, and improves surface roughness, especially when machining with high cutting velocity. Moreover, the amount of cutting fluid consumed at the rate of 2 ml/min is a drastic reduction compared to flood application. Also, no harmful oil mist is generated during the pulsed-jet application. In conclusion, the pulsed-jet application can be applied to milling process of hardened steel using ball end mills; it reduces the negative effects to the environment, improves machining performances, and consequently reduces total production cost.  相似文献   

7.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

8.
Effect of MQL on the tool life of small twist drills in deep-hole drilling   总被引:9,自引:3,他引:6  
Drilling of deep and small boreholes using twist drills has to be considered as one of the most difficult metal cutting operations. There are many reasons for this, one of them being that the cutting fluid has to be supplied externally. This research work investigates in how far the manner of supplying and the type of minimum quantity lubricant have an effect on the tool life of coated and uncoated high-speed steel twist drills of 1.5 mm diameter. Deep-hole drilling is performed as the holes, drilled into plain carbon steel, had a depth of 10 times the diameter. The feasibility of dry machining as an appropriate alternative to MQL in deep-hole drilling has also been investigated. This work shows that, compared to a continuous supply of the minimum quantity lubricant, a discontinuous supply brings about a significant reduction in tool life, especially in the case of heat-sensitive drills. With respect to the type of minimum quantity lubricant, a low-viscous type with a high cooling-capability gave rise to a notably prolonged tool life. It is also shown that dry drilling is associated with strongly accelerated tool wear for most of the twist drills tested, resulting in a significant reduction in tool life.  相似文献   

9.
Diamond tools cannot usually be applied for machining hardened steels while applying conventional cutting technique. As an alternative, ultrasonic elliptical vibration cutting (UEVC) technique was successfully applied for obtaining mirror surface on such steels using single crystal diamond (SCD) tools. In order to reduce production cost without compromising mirror surface quality, polycrystalline diamond (PCD) tools may be tested against highly expensive SCD tools. However, study on machining of hardened steel using PCD tools applying the UEVC technique has not yet been reported. The current research presents an experimental study on UEVC of hardened stainless steel (a typical Stavax, hardness 49 HRC) using the PCD tools. Face turning experiments were carried out to investigate the effects of three machining parameters: nominal depth of cut, feed rate, and nominal cutting speed on output performances such as cutting force, tool flank wear, surface roughness, and chip formation. Experimental results show that nominal cutting speed has very strong influence on the output performances, compared to the other two parameters. The surface roughness improves with a decrease in cutting speed. A mirror-like surface of approximately 804 mm2 with a roughness value Ra of 11 nm was achieved at a lower cutting speed. Theoretical explanations have been given to support the results drawn from the UEVC experiments. It can be concluded that, while applying the UEVC technique, the inexpensive PCD tools instead of the SCD tools can be effectively applied to obtain optical surface for producing precise molds from the hardened steel.  相似文献   

10.
Cubic Nitride Boron (CBN) tools are generally used for machining harder alloys such as hardened high Cr steels, titanium and nickel alloys. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of different CBN tool grades in finish turning Ti–6Al–4V (IMI 318) alloy at high cutting conditions, up to 250 m min−1, with various coolant supplies. Tool wear, failure modes, cutting and feed forces and surface roughness of machined surfaces were monitored and used to access the performance of the cutting tools. Comparative trials were carried out with uncoated carbide tools when machining at a speed of 150 m min−1. Test results show that the performance of CBN tools, in terms of tool life, at the cutting conditions investigated is poor relative to uncoated carbide tools, as expected and often, reported due probably to rapid notching and excessive chipping of the cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond strength of the tool substrate. An increase in the CBN content of the cutting tool also led to a reduction in tool life when machining at the cutting conditions investigated.  相似文献   

11.
研究涂层硬质合金刀具在高速铣削淬硬模具钢Cr12过程中刀具超常磨损、破损的原因,分析刀具耐用度的影响因素,并通过扫描电镜和能谱分析的方法对刀具的磨损、破损的机理进行研究,找出刀具破损的主要原因.  相似文献   

12.
This paper describes the results of application of different coolant strategies to high-speed milling of aluminum alloy A356 for automotive industry. The paper investigates the effect of flood coolant, dry cutting, and minimum quantity of lubricant (MQL) technologies on tool wear, surface roughness and cutting forces. The cutting speed range was up to 5225 m/min. The feed rate used was up to 20 m/min. The result of MQL application is compared with dry milling and milling with flood coolant application. It was found that the MQL technology could be a viable alternative to the flood coolant application. The adhesive tool wear mechanism and adhesion activated surface quality deterioration are revealed and the role of lubricant in their reduction is defined.  相似文献   

13.
Due to the recent developments of advanced cutting tool materials in the superbarasive family, such as cubic boron nitride (CBN) tools, the interest in cutting hardened steels has increased significantly. High flexibility and ability to manufacture complex workpiece geometry in one set up is the main advantage of hard turning compared to grinding. The focus of this study is to investigate the performance and wear behavior of CBN tools in finish, dry turning of four different hardened steels, treated to the same hardness Rc = 54. The following four materials were machined: X155CrMoV 12 cold work steel (AISI D2), X38CrMoV5 (AISI H11) hot work steel, 35NiCrMo16 hot work steel and 100Cr6 bearing steel (AISI 52100). A large variation in tool wear rate was observed in the machining of these steels. The tool flank grooves have been correlated to the microstructure of these steels, namely the presence of various carbides. The chip study reveals that there is presence of different amounts of white layers in machining these steels.  相似文献   

14.
Productivity and quality in the finish turning of hardened steels can be improved by utilizing predicted performance of the cutting tools. This paper combines predictive machining approach with neural network modeling of tool flank wear in order to estimate performance of chamfered and honed Cubic Boron Nitride (CBN) tools for a variety of cutting conditions. Experimental work has been performed in orthogonal cutting of hardened H-13 type tool steel using CBN tools. At the selected cutting conditions the forces have been measured using a piezoelectric dynamometer and data acquisition system. Simultaneously flank wear at the cutting edge has been monitored by using a tool makers microscope. The experimental force and wear data were utilized to train the developed simulation environment based on back propagation neural network modeling. A trained neural network system was used in predicting flank wear for various different cutting conditions. The developed prediction system was found to be capable of accurate tool wear classification for the range it had been trained.  相似文献   

15.
Functional die and mold components have complex geometries and are made of high hardness materials, which make them difficult to machine. This work contributes to a better understanding of this type of process and of the wear mechanisms of tools used in semi-finishing operations of hardened steels for dies and molds. Several milling experiments were carried out to cut AISI H13 steel with 50 HRC of hardness using the high-speed milling technique. The main goal was to verify the influence of workpiece surface inclination and cutting conditions on tool life and tool wear mechanisms. The main conclusions were the inclination of the machined surface strongly influences tool life and tool wear involves different mechanisms. At the beginning of tool life, the wear was caused mainly by abrasion on the flank face plus diffusion and attrition on the rake face. At the end of tool life, the mechanisms were adhesions and microchipping at the cutting edge.  相似文献   

16.
以PCBN复合片为刀具材料进行相关力学性能分析,并将其制成SNGN120408型刀具后在刀具机床上进行淬硬钢切削试验.分析结果表明:PCBN复合片的结合剂主要为TiN和TiB2,其内部结构均匀,且有良好的致密性.切削试验表明:在干式切削淬硬钢的试验中,切削进给量以及切削速度对PCBN刀具的磨损有较为明显的影响.相比于切...  相似文献   

17.
Abstract

This paper addresses the tribological challenges involved in the machining of compacted graphite iron (CGI) through an investigation of the effects of tool material, local tool surface topography and minimal quantity lubrication (MQL) on machining performance. Turning experiments were undertaken using four different tools (flat coated carbide, grooved coated carbide, grooved coated cermet and chamfered ceramic) under dry and MQL conditions. The tests were conducted at two different cutting speed conditions with a constant feed and depth of cut. Results reveal that at low speed, the cermet tool provides a significant reduction in cutting forces in comparison to coated carbide. Cutting forces show an increase with the usage of MQL at high speed, suggesting a negative influence of the cutting fluid on CGI machining performance. Scanning electron microscopy/energy dispersive X-ray analysis of the tested tools reveal the absence of MnS layer on tools used for CGI machining, thereby reconfirming the findings by other researchers.  相似文献   

18.
Machining of titanium at high cutting speeds such as from 4 m/s to 8 m/s is very challenging. In this paper, a new generation of driven rotary lathe tool was developed for high-speed machining of a titanium alloy, Ti–6Al–4V. The rotary tool was designed and fabricated based on the requirements of compact structure, sufficient stiffness and minimal edge runout. Cylindrical turning experiments were conducted using the driven rotary tool (DRT) and a stationary cutting tool with the same insert, for comparison in the high-speed machining of Ti–6Al–4V. The results showed that the DRT can significantly increase tool life. Increase in tool life of more than 60 times was achieved under certain conditions. The effects of the rotational speed of the insert were also investigated experimentally. Cutting forces were found to decline slightly with increase of the rotational speed. Tool wear appears to increase with the rotational speed in a certain speed range.  相似文献   

19.
T. Aoyama 《CIRP Annals》2002,51(1):289-292
The minimal quantity lubrication (MQL) technique is used in cutting processes in order to reduce the environmental pollution caused by cooling lubricants. However, there can be problems with the MQL technique in high-speed machining. In high-speed machining, a spindle-through coolant supply method can effectively supply an oil mist to the cutting area. However, the centrifugal force from the high-speed rotation of the spindle causes the oil mist to separate. As a result, there is a decrease in the oil mist supplied to the cutting area. In this study, a new oil-mist supply mechanism was developed and installed in a high-speed spindle system. The performance of this proposed mechanism was evaluated by numerical simulation and an actual cutting test.  相似文献   

20.
肖军民 《机床与液压》2014,42(18):108-112
为提高SKD11模具钢铣削刀具的寿命,对SKD11模具钢进行了刀具寿命铣削试验,基于极差方法分析了各工艺参数对刀具寿命的影响规律。基于刀具寿命铣削试验,利用多元线性回归方法,推导并求解出了SKD11模具钢铣削刀具磨损的数学模型。利用最优化设计方法和MATLAB优化工具箱,以加工效率和刀具磨损为目标函数,针对实际的铣削问题优选了工艺参数。优化的工艺参数能兼顾刀具寿命和加工效率,为加工企业降低综合生产成本提供了重要的理论依据和案例参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号