首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
迟鹏  彭建  谷付星 《光学仪器》2019,41(4):63-68
在对微纳材料光学特性表征中,需要获得分辨率更高的波长和强度的荧光图像。普通的显微镜无法满足测试的要求,因此将普通的成像显微镜、光谱仪以及纳米移动台组成激光扫描显微镜成像系统,并利用LabVIEW开发了一套完整的集二维扫描采集与信号图像处理一体的系统上位机软件。扫描采集过程使用了低通滤波等数字信号处理方法消除光谱仪信号噪声的影响。利用本系统测量硒化镉纳米带、单层二硫化钼得到了荧光强度图像以及荧光峰值波长图像,能分辨出最小波长为0.03 nm的荧光。将采集长度与实际长度进行比较并分析荧光强度差异,取得了较好的效果。  相似文献   

2.
An image processing algorithm is presented to reconstruct optical pathlength distributions from images of nonabsorbing weak phase objects, obtained by a differential interference contrast (DIC) microscope, equipped with a charge-coupled device camera. The method is demonstrated on DIC images of transparent latex spheres and unstained bovine spermatozoa. The images were obtained with a wide-field DIC microscope, using monochromatic light. After image acquisition, the measured intensities were converted to pathlength differences. Filtering in the Fourier domain was applied to correct for the typical shadow-cast effect of DIC images. The filter was constructed using the lateral shift introduced in the microscope, and parameters describing the spectral distribution of the signal-to-noise ratio. By varying these parameters and looking at the resulting images, an appropriate setting for the filter parameters was found. In the reconstructed image each grey value represents the optical pathlength at that particular location, enabling quantitative analysis of object parameters using standard image processing techniques. The advantage of using interferometric techniques is that measurements can be done on transparent objects, without staining, enabling observations on living cells. Quantitative use of images obtained by a wide-field DIC microscope becomes possible with this technique, using relatively simple means.  相似文献   

3.
Analysis of in vitro cell motility is a useful tool for assessing cellular response to a range of factors. However, the majority of cell-tracking systems available are designed primarily for use with fluorescently labelled images. In this paper, five commonly used tracking systems are examined for their performance compared with the use of a novel in-house cell-tracking system based on the principles of image registration and optical flow. Image registration is a tool commonly used in medical imaging to correct for the effects of patient motion during imaging procedures and works well on low-contrast images, such as those found in bright-field and phase-contrast microscopy. The five cell-tracking systems examined were Retrac, a manual tracking system used as the gold standard; CellTrack, a recently released freely downloadable software system that uses a combination of tracking methods; ImageJ, which is a freely available piece of software with a plug-in for automated tracking (MTrack2) and Imaris and Volocity, both commercially available automated tracking systems. All systems were used to track migration of human epithelial cells over ten frames of a phase-contrast time-lapse microscopy sequence. This showed that the in-house image-registration system was the most effective of those tested when tracking non-dividing epithelial cells in low-contrast images, with a successful tracking rate of 95%. The performance of the tracking systems was also evaluated by tracking fluorescently labelled epithelial cells imaged with both phase-contrast and confocal microscopy techniques. The results showed that using fluorescence microscopy instead of phase contrast does improve the tracking efficiency for each of the tested systems. For the in-house software, this improvement was relatively small (<5% difference in tracking success rate), whereas much greater improvements in performance were seen when using fluorescence microscopy with Volocity and ImageJ.  相似文献   

4.
Abstract

Data acquisition is reported for a Varian CP 3800 gas chromatograph with affordable and user friendly interface box and software. LabPro was triggered to commence data acquisition upon sample injection and simultaneously monitored two detectors and oven temperature. After acquisition, functions are available for determining the retention time and for peak integration after baseline subtraction. Data may be exported as a text file. The interface box and software are available at a tenth of the cost of the instrument vendor's software. In this work, the determination of optimum carrier gas flow rate is reported as an example.  相似文献   

5.
A microscope set-up and numerical methods are described which enable the measurement and reconstruction of three-dimensional nanosecond fluorescence lifetime images in every voxel. The frequency domain fluorescence lifetime imaging microscope (FLIM) utilizes phase detection of high-frequency modulated light by homodyne mixing on a microchannel plate image intensifier. The output signal at the image intensifier's phosphor screen is integrated on a charge coupled device camera. A scanning stage is employed to obtain a series of phase-dependent intensity images at equally separated depths in a specimen. The Fourier transform of phase-dependent data gives three-dimensional (3D) images of the Fourier coefficients. These images are deblurred using an Iterative Constrained Tikhonov–Miller (ICTM) algorithm in conjunction with a measured point spread function. The 3D reconstruction of fluorescence lifetimes are calculated from the deblurred images of the Fourier coefficients. An improved spatial and temporal resolution of fluorescence lifetimes was obtained using this approach to the reconstruction of simulated 3D FLIM data. The technique was applied to restore 3D FLIM data of a live cell specimen expressing two green fluorescent protein fusion constructs having distinct fluorescence lifetimes which localized to separate cellular compartments.  相似文献   

6.
We have coupled a spectrophotometer with a scanning near‐field optical microscope to obtain, with a single scan, simultaneously scanning near‐field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment. The analysis of these images allowed us to visualize some specific chromatin areas where RNA is associated with DNA showing that such a technique could be used to identify multiple components within a cell.  相似文献   

7.
In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three‐dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three‐dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three‐dimensional specimens is essential. Fluorescence z‐projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results.  相似文献   

8.
The visualization of the data obtained with scanning probe microscopes can be improved by the use of virtual reality software which has recently become available commercially. One such software program was applied to images obtained with an atomic force microscope. The mapping capabilities of this new visualization technique as well as the images were quite striking when viewed in virtual reality.  相似文献   

9.
Study of rice pollen grains by multispectral imaging microscopy   总被引:1,自引:0,他引:1  
Cellular images obtained by light microscopy have been analyzed qualitatively, but there is still a lack of quantitative information about the variations in cellular metabolism of selective substances. A new approach using the multispectral imaging microscope (MIM) to observe rice (Oryza sativa L.) pollen grains is reported. A liquid crystal tunable filter device was used for wavelength selection from 400 to 720 nm and a cooled two-dimensional monochrome charge coupled device for image detection. Rice pollen were stained respectively by acetocarmine, Coomassie blue, or iodine potassium-iodine, and then imaged by MIM. The images were processed by the WuDa Image Analysis System 2003 (computer software), and the transmittance spectra for pollen grain images were obtained. The statistical analysis of the transmittance data showed that the macromolecular amount (nucleic acid, protein, starch) of male-sterile line (MSL) pollen grains was less than those of the fertility-maintaining line (FML). For instance there was a significantly lower nucleic acid content in the MSL than in the FML pollen. The results revealed that pollen abortion was directly related to the diminution of intracellular substances for metabolism. Consequently, we have established a quantitative criterion to determine pollen sterility. Comparing the spectra features of the FML with the MSL, we found that certain spectra features can be used to identify various types of abortion pollens and the deficient cytoplasm of male-sterile rice. Our experimental results offer the first quantitative understanding for evaluating cell morphological structure correlated with cellular physiological status.  相似文献   

10.
An image cytometric method for quantifying integrated fluorescence was developed to measure the relative DNA contents of bacterial nucleoids. Image analysis was performed with newly developed macros in combination with the program Object-Image, all downloadable from http://simon.bio.uva.nl/object-image.html. Four aspects of the method were investigated. (i) Good linearity was found over a ten-fold range of fluorescence intensity in a test with a calibration kit of fluorescent latex spheres. (ii) The accuracy of the method was tested with a narrowly distributed Escherichia coli population, which was obtained by growing cells into stationary phase. The width of the image cytometric distribution was approximately 6%, in good agreement with results obtained by flow cytometry. (iii) The error contribution of manual focusing could be kept below 2%, although a strong dependency between integrated fluorescence and focus position was observed. (iv) The results were verified with a flow cytometer, which gave similar distributions for the DNA contents per cell expressed in chromosome equivalents (4.8 fg of DNA). We used the presented method to evaluate whether the DNA conformation had any effect on the total fluorescence of bacterial nucleoids. Experiments using nucleoids with the same amount of DNA in either a dispersed or a compact conformation showed no significant difference in integrated fluorescence, indicating that it is possible to determine the DNA content per nucleoid independently of the actual organization of the DNA.  相似文献   

11.
A system based on a personal computer has been developed which provides a relatively inexpensive way to equip an electron microscopy laboratory for quantitative elemental analyses of cryosectioned biological samples. This system demonstrates the feasibility of making an X-ray analyser from a personal computer, together with commercially available hardware and software components. Hardware and software have been assembled to drive the beam in a scanning electron microscope, collect and analyse X-ray spectra, and save, retrieve, and analyse data. Our software provides a menu-controlled user interface to direct spectra acquisition and analysis. Spot analyses, video images, and quantitative elemental images may be obtained and results transferred in ASCII format to other computers. Wet weight, as well as dry weight, concentrations are calculated, if measurements were made of areas of the hydrated sample before it was freeze-dried. Grey-level copies of video and quantitative elemental images may be made on a laser printer.  相似文献   

12.
Deconvolution techniques have been widely used for restoring the 3‐D quantitative information of an unknown specimen observed using a wide‐field fluorescence microscope. Deconv , an open‐source deconvolution software package, was developed for 3‐D quantitative fluorescence microscopy imaging and was released under the GNU Public License. Deconv provides numerical routines for simulation of a 3‐D point spread function and deconvolution routines implemented three constrained iterative deconvolution algorithms: one based on a Poisson noise model and two others based on a Gaussian noise model. These algorithms are presented and evaluated using synthetic images and experimentally obtained microscope images, and the use of the library is explained. Deconv allows users to assess the utility of these deconvolution algorithms and to determine which are suited for a particular imaging application. The design of Deconv makes it easy for deconvolution capabilities to be incorporated into existing imaging applications.  相似文献   

13.
Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low‐light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera. As bioluminescence microscopy requires no excitation light, it lacks the photo‐toxicity associated with fluorescence imaging and permits the long‐term, nonlethal observation of living cells. Thus, bioluminescence microscopy would be a powerful tool in cellular biology that complements fluorescence microscopy.  相似文献   

14.
15.
Recent advances in widely available microcomputers have made the acquisition and processing of digital quantitative X-ray maps of one to several cells readily feasible. Here we describe a system which uses a graphics-based microcomputer to acquire spectrally filtered X-ray elemental image maps that are fitted to standards, to display the image in real time, and to correct the post-acquisition image map with regard to specimen drift. Both high-resolution quantitative energy-dispersive X-ray images of freeze-dried cyrosections and low-dose quantitative bright-field images of frozen-hydrated sections can be acquired to obtain element and water content from the same intracellular regions. The software programs developed, together with the associated hardware, also allow static probe acquisition of data from selected cell regions with spectral processing and quantification performed on-line in real time. In addition, the unified design of the software program provides for off-line processing and analysing by several investigators at microcomputers remote from the microscope. The overall experimental strategy employs computer-aided imaging, combined with static probes, as an essential interactive tool of investigation for biological analysis. This type of microchemical microscopy facilitates studies in cell physiology and pathophysiology which focus on mechanisms of ionic (elemental) compartmentation, i.e. structure-function correlation at cellular and subcellular levels; it allows investigation of intracellular concentration gradients, of the heterogeneity of cell responses to stimuli, of certain fast physiological events in vivo at ultrastructural resolution, and of events occurring with low incidence or involving cell-to-cell interactions.  相似文献   

16.
On-line processing and analysis of high resolution electron microscope (HREM) images has been implemented using a software controlled image processor based on a commercial digital video framestore. It directly digitizes the output from the low light TV camera on the HREM and applies any processing necessary. The conditions under which images from amorphous specimens are being obtained can be established on-line. The fast fourier transforms (FFTs) of 256 times 256 pixels produced in 15 s with the system off-line are comparable to those from diffraction analysis of the same data on a laser optical bench. The precision of analysis of defocus, aberrations and astigmatism on-line is discussed, together with possible approaches to routine analysis of crystalline specimens and for interactive control.  相似文献   

17.
This paper presents a simple, high-resolution, non-fluorescent imaging technique called total internal reflection microscopy (TIRM) and demonstrates its potential application to real-time imaging of live cellular events. In addition, a novel instrument is introduced that combines the simplicity of TIRM with the specificity afforded by dual-colour total internal reflection fluorescence (TIRF) microscopy and allows sequential imaging with the two modalities. The key design considerations necessary to apply these imaging modes in a single instrument are discussed. The application of TIRM alone yielded high-resolution live images of cell adherence to a poly- l -lysine modified substrate, whereby fine cellular structures are imaged. Non-fluorescent imaging of the uptake of sub-micron–sized polymeric particles by live cells is also demonstrated. Finally, images of fluorescently labelled cells were obtained in TIRF mode, sequentially to images obtained of the same cell in TIRM mode. Visual information gained using TIRF is compared with TIRM to demonstrate that the level of cell structure information obtainable with our total internal reflection microscope is comparable with the TIRF technique.  相似文献   

18.
Three-dimensional maps of cellular metabolic oxidation/reduction states of rabbit cornea in situ were obtained by imaging the fluorescence of the naturally occurring reduced pyridine nucleotides (both reduced nicotinamide-adenine dinucleotide, NADH, and reduced nicotinamide-adenine dinucleotide phosphate, NADPH, denoted here as NAD(P)H). Autofluorescence images with submicrometre lateral resolution were obtained throughout the entire 400 μm thickness of the cornea. Two-photon excitation scanning laser microscopy with near-infrared excitation provided high fluorescence collection efficiency, reduced photodamage, and eliminated ultraviolet chromatic aberration, all of which have previously degraded the visualization of pyridine nucleotide fluorescence. Sharp autofluorescence images of the basal epithelium (40 μm within the cornea) show substantial subcellular detail, providing the ability to monitor autofluorescence intensity changes over time, which reflect changes in oxidative metabolism and cellular dynamics necessary for maintenance of the ocular surface. The autofluorescence was confirmed to be mostly of NAD(P)H origin by cyanide exposure, which increased the fluorescence from all cell types in the cornea by about a factor of two. Autofluorescence images of individual keratocytes in the stroma were observed only after cyanide treatment, while in the predominant extracellular collagen (> 90% of the stromal volume), fluorescence was not distinguished from the background. Observation of keratocyte metabolism demonstrates the sensitivity made available by two-photon microscopy for future redox fluorescence imaging of cellular metabolic states.  相似文献   

19.
Recently, direct measurements of forces stabilizing single proteins or individual receptor–ligand bonds became possible with ultra-sensitive force probe methods like the atomic force microscope (AFM). In force spectroscopy experiments using AFM, a single molecule or receptor–ligand pair is tethered between the tip of a micromachined cantilever and a supporting surface. While the molecule is stretched, forces are measured by the deflection of the cantilever and plotted against extension, yielding a force spectrum characteristic for each biomolecular system. In order to obtain statistically relevant results, several hundred to thousand single-molecule experiments have to be performed, each resulting in a unique force spectrum. We developed software and algorithms to analyse large numbers of force spectra. Our algorithms include the fitting polymer extension models to force peaks as well as the automatic alignment of spectra. The aligned spectra allowed recognition of patterns of peaks across different spectra. We demonstrate the capabilities of our software by analysing force spectra that were recorded by unfolding single transmembrane proteins such as bacteriorhodopsin and NhaA. Different unfolding pathways were detected by classifying peak patterns. Deviant spectra, e.g. those with no attachment or erratic peaks, can be easily identified. The software is based on the programming language C++, the GNU Scientific Library (GSL), the software WaveMetrics IGOR Pro and available open-source at http://bioinformatics.org/fskit/ .  相似文献   

20.
Optical-sectioning, digital fluorescence microscopy provides images representing temporally- and spatially-resolved molecular-scale details of the substructures of living cells. To render such images into solid models for further computational analyses, we have developed an integrated system of image acquisition, processing, and rendering, which includes a new empirical technique to correct for axial distortions inherent in fluorescence microscopy due to refractive index mismatches between microscope objective immersion medium, coverslip glass, and water. This system takes advantage of the capabilities of ultra-high numerical aperture objectives (e.g. total internal reflection fluorescence microscopy) and enables faithful three-dimensional rendering of living cells into solid models amenable to further computational analysis. An example of solid modeling of bovine aortic endothelial cells and their nuclei is presented. Since many cellular level events are temporally and spatially confined, such integrated image acquisition, processing, rendering, and computational analysis, will enable, in silico, the generation of new computational models for cell mechanics and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号