首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
应用超声波/铁炭微电解联合技术,以实际印染废水为目标污染物,采用自制的反应装置考察超声波/铁炭微电解技术的协同效应,研究废水的初始pH值、铁屑投加量、停留时间等因素对废水降解效果的影响,并在相同条件下对有无超声的铁炭微电解处理废水的降解效果进行对比.研究结果表明:单独铁炭微电解条件下,当铁/水体积比为1/4,炭/水体积比为1/2,反应时间为120min,pH值为7时,对废水的COD去除率达到90%;而在超声条件下,铁炭微电解对废水的处理效果明显改善,COD去除率达到98%,说明超声波和铁炭微电解对处理印染废水有明显的协同效应.  相似文献   

2.
杨剑 《广州化工》2012,40(9):154-155,178
实验探讨了微电解法处理高浓度电镀废水的效果,考察了pH值、铁炭比、铁炭总投加量和反应时间对镍去除率的影响。实验得出的最佳反应条件为:pH为3、铁投加量60 g/L、炭投加量60 g/L,反应120 min时,镍的去除率可达64.09%,较好的降低了废水中Ni2+的含量,为后续处理奠定了基础。  相似文献   

3.
对采用蒸馏—铁炭微电解—吹脱工艺预处理实际乐果废水的效能进行了研究。保持工艺条件为:蒸馏温度为105℃,搅拌速度为100 r/min;铁炭微电解进水p H=3,铁炭质量比为1∶1,气水比为10∶1,反应时间为120 min;吹脱过程p H=11,温度为35℃,气液比为300∶1,吹脱时间为120 min。结果表明,工艺对废水的COD去除率达78.56%,TP的去除率达99.86%,TN、氨氮的去除率分别为93.91%、95.91%,B/C由0.08提高到0.32。采用蒸馏—铁炭微电解—吹脱对乐果废水预处理效果较好,有利于后期生化处理。  相似文献   

4.
铁炭微电解-EGSB处理富马酸生产废水的研究   总被引:1,自引:0,他引:1  
研究了铁炭微电解预处理和膨胀颗粒污泥床(Expanded Granular Sludge Bed,简称EGSB)反应器处理富马酸废水的效果.结果表明:铁炭微电解作为预处理方法可获得较为理想的处理效果,处理后COD去除率可达43%.B/C由0.12上升到0.40;较低的pH有利于微电解的处理,pH>4以后,COD去除率下降较快;m(铁):m(炭)=2:1~5:1时,微电解处理效果最好.EGSB反应系统能够有效地处理经微电解处理后的富马酸生产废水,COD去除率可达90%以上.铁炭微电解预处理+厌氧生物处理的组合工艺可为后续好氧处理创造有利条件,最终实现达标排放的目标.  相似文献   

5.
采用酸析+铁炭微电解-Fenton氧化预处理印染开纤废水,研究了工艺条件对COD去除率的影响。结果表明,酸析的最佳运行条件:pH=3;铁炭微电解的最佳运行条件为:进水pH=2,反应时间2小时;Fenton氧化进水pH=3,反应时间为60 min,30%浓度H_2O_2最佳投加量2.5 m L/L。在此运行条件下,COD总去除率可以达到94.5%,废水的B/C比由原来的0.02提升至0.25。采用该工艺预处理开纤废水,有效降低了后续生化处理的负荷,提高了废水的可生化性。  相似文献   

6.
阿奇霉素废水的预处理   总被引:3,自引:0,他引:3  
针对阿奇霉素废水高COD、高氨氮浓度、高色度以及高含盐量的特点,采用吹脱-铁炭微电解-Fenton氧化预处理阿奇霉素废水,效果良好。试验结果表明:吹脱pH值为11~12、吹脱时间20 h时,氨氮去除率达到80%;铁炭微电解pH值为3~4、铁炭比为1.5、反应时间为80 min时,COD去除率达到45%;向微电解出水投加30 mL/L的H2O2(质量分数为30%)进行Fenton氧化处理,COD去除率提高到89.6%。预处理后,废水的BOD5/COD从0.18提高到0.3,提高了废水的可生化性。  相似文献   

7.
铁炭微电解/Fenton氧化预处理高浓度煤化工废水的研究   总被引:2,自引:1,他引:2  
采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,研究了工艺条件对COD去除率的影响。结果表明,铁炭床微电解的最佳运行条件为:进水pH=2,反应时间为20 min;Fenton氧化的最佳条件为:进水pH=4,30%H2O2投加量为3 mL/L,反应时间为60 min。在此运行条件下,COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。采用该工艺预处理高浓度煤化工废水,降低了后续生物处理的负荷,同时不会引起铁炭床的钝化和板结。  相似文献   

8.
针对单级曝气铁炭微电解对高浓度难生化有机废水CODCr去除效率低的问题,研究了Fenton试剂强化一级出水下的二级曝气铁炭微电解预处理法。结果表明:将一级铁炭微电解出水的pH值调为2,投加200 mg/LH2O2(30%)后,使其进入二级铁炭微电解反应器;反应60 min,CODCr去除率较一级微电解处理可提高25%左右,较直接串联两级微电解处理提高16%,强化反应出水的m(BOD5)/m(CODCr)从小于0.21提高至0.45,达到较好的预处理效果,可作为高浓度难生化降解有机化工废水预处理的理想方法。  相似文献   

9.
铁炭微电解-Fenton试剂联合氧化深度处理印染废水的研究   总被引:10,自引:0,他引:10  
采用铁炭微电解-Fenton联合氧化技术对印染废水生化处理的出水进行深度处理,考察了pH值、H2O2投加量、铁炭体积比、反应时间对处理效果的影响。结果表明,最佳反应条件为:pH2~3,H2O2用量3.2 mL/L,铁炭体积比为1∶1,反应时间为90 min,COD的去除率达到90%以上,色度去除率为99%,盐度去除率为64%,各项指标均达到了印染废水的回用要求。  相似文献   

10.
电镀废水是一种典型的难降解废水,可生化性差,需采用物化法进行处理。取混凝沉淀后的废水进行研究,采用铁炭微电解-Fenton法进行处理。结果表明:混凝沉淀预处理电镀废水后,采用该组合工艺,能很好地降低废水中难降解有机物的浓度及除色度。铁炭微电解反应的最佳pH值为3~4,最佳停留时间为60~90min。Fenton反应的初始pH值为3~4较合适;反应时间为60min时,COD的去除率接近最大值;H2O2的最佳投加量为10%。  相似文献   

11.
采用反应沉淀/水解酸化/MBR组合工艺处理以合成制药废水为主的污水处理厂污水,处理出水不能达到《化学合成类制药工业水污染物排放标准》(GB 21904—2008)的要求。对此采用铁炭微电解工艺作为前置处理工艺对该废水进行了预处理实验研究,结果表明,当铁炭投加量为400 g/L,铁炭质量比为4∶5,HRT=3 h,p H=4,曝气量为3 L/min时,预处理效果较好,铁炭微电解对COD的去除率达47.50%,废水可生化性由0.23提升到0.38,使后续工艺运行效果大幅提升,最终使处理出水达标排放。  相似文献   

12.
皂素废水属于高浓度有机废水,具有色度大、有机物浓度高、酸度大等特点。将微电解氧化技术应用于皂素废水预处理研究中,发现进水pH=3,铁碳微电解填料加量为450 g/L,反应时间为120 min,曝气量为20~25 m L/min时,COD去除率为40.6%,色度去除率为46.0%。  相似文献   

13.
徐桂林  林惟 《辽宁化工》2012,41(7):670-671,674
采用铁碳微电解方法进行灭多威废水的预处理,考察了铁碳质量比、反应初始pH、曝气量和反应时间对废水处理效果的影响.结果表明,最佳铁碳比为1∶1,pH=4.0,曝气量为6 L/min,电解时间为100min,B/C由原水的不足0.1提高到出水的0.38,废水的可生化性显著提高.  相似文献   

14.
微电解电化学法处理高浓度电镀废水   总被引:8,自引:3,他引:5  
陈海燕 《广东化工》2004,31(2):49-51
研究了利用铁炭在水中发生的微电解过程可以有效地去除处理重金属离子的作用机理,结合工程实例,介绍了采用微电解电化学法处理电镀废水工艺流程,处理效果表明了采用微电解电化学法处理含重金属离子废水具有处理工艺简单、处理效果好、经济合理的优点。  相似文献   

15.
铁碳微电解法处理水基切削废液   总被引:1,自引:0,他引:1  
杨桥  张秀玲  连建肖 《上海化工》2009,34(11):15-17
采用铁碳微电解法对水基切削废液进行处理,研究了不同因素对废液CODCr去除率的影响,并通过正交实验得出最佳的工艺处理条件:常温下,当铁碳投加量为0.6g/mL、铁碳质量比为1∶1、反应时间为150min、pH值为1时,水基切削废液CODCr去除率大于93%。  相似文献   

16.
徐桂林  林惟 《上海化工》2012,37(10):4-6
采用铁碳微电解方法进行灭多威废水的预处理,考察了铁碳质量比、反应初始pH值、曝气量和反应时间等对废水处理效果的影响。结果表明,最佳铁碳比为1∶1、pH=4.0、曝气量6 L/min、电解时间100 min时,B/C由原水的不足0.1提高到出水的0.38,废水的可生化性显著提高。  相似文献   

17.
张汉铭  袁俊秀 《辽宁化工》2010,39(12):1243-1246
利用铁碳微电解法处理1-萘酚-5-磺酸模拟废水,研究了废水的初始pH值、反应时间、反应温度、铁屑粒度、铁碳比对处理效果的影响,得出铁碳微电解法的最佳工艺条件。实验结果表明在溶液初始pH值为2.0,铁屑粒径为0.45~0.90 mm,铁碳质量比为5︰1,反应温度为25~30℃,反应时间为2 h时,1-萘酚-5-磺酸的去除率达到80.1%。  相似文献   

18.
贾艳萍  张真  佟泽为  王嵬  张兰河 《化工学报》2020,71(4):1791-1801
针对印染废水色度高、成分复杂、难降解等问题,利用铁碳微电解工艺处理该废水,提高其可生化性和处理效率。考察初始pH、铁投加量、铁/碳质量比及反应时间对工艺的影响,通过扫描电子显微镜(SEM)、红外光谱、X射线能谱(EDS)及X射线衍射(XRD)分析反应前后铁碳结构的变化,采用Zeta电位和紫外可见光谱等对比废水处理前后有机物成分的变化,探究印染废水的降解机理。结果表明:在初始pH为4、铁投加量为80 g/L、铁/碳质量比为0.8及反应时间为90 min时,COD、浊度、色度、氨氮和TOC去除率分别为75.48%、87.88%、75.34%、92.01%和81.09%。反应前铁碳反应器的成分以Fe、C为主,活性炭的孔隙结构发达,反应后铁碳表面附着Al、K等其他金属物质和铁的氢氧化物絮体。铁碳微电解工艺可降解酯、醇类有机物为小分子物质,提高废水可生化性。  相似文献   

19.
以硫铁矿烧渣为主要材料制备了球形铁碳填料,并将其用于电镀清洗废水的处理。由交互正交试验结果可知,废水pH值是影响COD和氨氮去除率的主要因素,其次是废水pH值与铁碳填料添加量的交互作用和废水pH值与反应时间的交互作用。微电解的最佳工艺条件为:废水pH值2.50,铁碳填料的添加量15 g/L,反应时间30 min。此时,COD降低78.6%,氨氮降低15.0%,处理效果比商品铁碳填料的好。  相似文献   

20.
李冰璟  付丹  赵伟 《净水技术》2011,30(5):115-118,154
电镀废水水质复杂,含有多种污染物,其中Ni+、Cu2+等重金属已得到良好的回收利用,但对有机污染物和氨氮的去除研究鲜见报道.本文采用铁碳微电解法对电镀废水进行预处理,可确保出水中残留重金属不影响后续生物反应,预氧化表面活性剂、光亮剂及其它助剂,提高了废水的可生化性;进而通过水解酸化和好氧膜生物反应器(MBR)的生物处理...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号