首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks (OTNs) in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single-layer survivability, where some recovery mechanism (e.g. protection or restoration) is implemented in a single network layer and multilayer survivability, where recovery is implemented in multiple network layers. The survivable MPLS over OTN design is implemented as a static network optimization problem and incorporates various methods for spare capacity allocation (SCA) to reroute disrupted traffic.The comparative analysis between the single layer and the multilayer survivability shows the influence of the traffic granularity on the survivability cost: for high-bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low-bandwidth LSPs the single-layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9%) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one; however, this is at the increase in the optimization problem complexity. These results are based on a cost model with current technology pricing and were obtained for networks targeted to a nationwide coverage.  相似文献   

2.
In MPLS (Multi-Protocol Label Switching) over optical networks, both the optical level and the MPLS level fault recovery can be considered. Generally, a more flexible path arrangement can be realized by the MPLS level recovery, while fast recovery can be achieved by the optical level recovery. When the optical level recovery is adopted, only normal traffic is carried through the working lightpaths and only recovered traffic is carried through the backup lightpaths. In contrast, the working LSPs (Label-Switched Paths) and the backup LSPs corresponding to other working LSPs can be accommodated into an identical lightpath when the MPLS level recovery is adopted. By such sophisticated accommodation of LSPs into the lightpaths, lightpath bandwidth can be utilized efficiently under the condition that the bandwidth utilization is restricted to attain the given objective of transfer quality for the MPLS packets in the normal state and unrestricted in a short time a failure occurs somewhere in the network. This paper proposes a simple mathematical programming model to obtain the optimum arrangement of the working and backup LSPs assuming the MPLS level recovery and a practical LSPs provisioning mode. By comparing the minimized network cost obtained from the optimum arrangement of the working and backup LSPs with the network cost resulting from the optical level recovery, this paper quantitatively evaluates the effectiveness of such bandwidth utilization improvement obtained from the MPLS level recovery and reveals that the MPLS level recovery can actually reduce the network cost due to its flexible arrangement of LSPs on the lightpaths.  相似文献   

3.
A preplanned path-protection scheme with sufficient spare bandwidth is appropriate for real-time fault restoration in multiprotocol label switching (MPLS) networks. In this case, however, it is important to reduce the amount of spare bandwidth to prevent degradation of network efficiency. A distributed label switched path (D-LSP) scheme is proposed to reduce the amount of spare bandwidth required for protecting against network faults in MPLS networks. The main idea of the proposed D-LSP scheme is to partition traffic into multiple LSPs, each of which is established on a distinct link-disjoint route between each pair of end nodes. The D-LSP scheme is evaluated in terms of the reduction ratio of total network cost in comparison with the conventional LSP scheme. Traffic partitioning in the D-LSP scheme can decrease the statistical multiplexing gain (SMG) obtained by aggregating IP packet flows into an LSP. The tradeoff between spare bandwidth reduction and degradation of SMG due to traffic partitioning is also investigated. The numerical results show that the proposed D-LSP scheme yields the network cost-reduction ratio (NCRR) of at least 29%, 27%, and 15% for the networks where average node degrees are 4.6, 4.4, and 3.2, respectively. The D-LSP scheme shows the similar performance of NCRR in both Markovian traffic and self-similar traffic environments.  相似文献   

4.
江雪敏  李彤岩 《信息技术》2007,31(9):91-93,96
为了适应多层次网络发展的需要,在讨论WDM光层生存性机制的基础上,针对多层网络联合的生存性机制进行了仔细的分析,提出了一种多层协调的实现办法,并讨论了多层空闲资源设计中的共享问题。  相似文献   

5.
This paper reports on a novel strategy and related algorithm for realizing dynamic routing and grooming into wavelengths of data flows (label switched paths, LSPs) in new generation optical networks based on generalized MPLS (GMPLS). The method allows arbitrary granularities of LSPs. The new generation network is modeled as a multi-layer network consisting of an IP/MPLS layer and an optical layer. In particular, the proposed solution adopts a dynamic routing algorithm based on the Dijkstra algorithm, that makes use of a weight system, integrated with a suitable method for grooming LSPs into wavelengths based on the packing criterion, thus harmonizing the features of MPLS packet flows whose bandwidth vary in a continuous range of values, with the optical world, where the wavelength bandwidth ranges according to discrete values. The weight system is based on the concepts of least resistance routing that allows to evenly distribute the traffic at the MPLS layer, while packing improves the use of optical resources by favoring more filled wavelengths with respect to the emptier ones. To assess the validity of the proposed solution a simulation model has been realized. The results obtained by simulation show that the packing criterion allows reducing the refused bandwidth from two down to about four times, for a network load of 70% and 55%, respectively, when compared with the alternative method named spreading. The dependence of the proposed solution on bandwidth granularity has been also investigated. Moreover, in order to demonstrate the superior performance of the proposed routing solution, a comparison between the proposed strategy with relevant solutions known in the literature, based on either a single or multi-layer approach, is also reported. In order to perform the comparison, all the reference routing solutions that have been considered adopt the packing method for LSP grooming into the lightpaths. The results show that our solution outperforms the others in terms of amount of traffic that can be on-line accommodated. For instance, assuming a blocking probability of 10–3, the proposed solution is able to further reduce the refused bandwidth of the best routing algorithm considered in the analysis by a factor of three times, thanks to the knowledge of optical resource availability.  相似文献   

6.
7.
In dynamic IP-over-WDM networks efficient fault-management techniques become more difficult since as demands change with time the optimal logical topology varies as well. Changes in the virtual topology should be done with care because working IP LSPs routed on top of a virtual topology should not be interrupted. Reconfiguration of the virtual topology may also affect precomputed backup IP LSPs to be activated in case of failure meaning that backup IP LSPs would need to be recomputed after any change in the virtual topology. A good sense solution can be the dimensioning of the virtual topology for a worst case traffic scenario, having as goal the minimization of the network cost, for example, and then route dynamic IP LSPs on this virtual topology. The virtual topology would remain unchanged as long as possible, that is, until changes in the virtual topology are considered to bring considerable benefits. Since data services over IP are essentially of a best-effort nature, protection could be provided, using IP LSP protection, only when bandwidth is available in the virtual topology. The computation of backup IP LSPs does not interfere with working IP LSPs meaning that no service interruption will exist. Such a strategy, considered in this paper, allows resources to be used efficiently, since free bandwidth is used for backup purposes, while the normal delivery of traffic is guaranteed in peak traffic situations although having no protection guarantees. Our main objective is to quantify the spare capacity, which can be used for restoration (backup) purposes, over a virtual topology designed and optimized to carry a traffic scenario with no survivability and QoS requirements. We analyse the maximum protection (MP) problem in such IP-over-WDM network environment. Protection is provided to IP LSP requests whenever possible through bandwidth reservation in a backup IP LSP on the virtual topology. Besides the mathematical formalization of the MP problem, an upper bound and heuristic algorithms are proposed and evaluated. The traffic considered includes IP LSPs of different granularities and is the worst case traffic scenario for which the network should be dimensioned.  相似文献   

8.
IP voer WDM光网络及其生存性问题讨论   总被引:4,自引:2,他引:2  
本文介绍了IP voer WDM光网络的演进过程与发展趋势;讨论了其生存性问题,包括光层生存性有关概念、分类及各自的优缺点,IP/MPLS层与WDM层联合生存机制的必要性以及这种联合机制需要解决的竞争问题=带宽资源共享问题和失效扩散问题等。  相似文献   

9.
Network operators are willing to provide a range of services in the hope of maximizing their profits: from the highly available connectivity services for key business customers to the unprotected or even best effort services for residential customers. These services are being provided through IP/multiprotocol label switching (MPLS) over wavelength-switched optical networks (WSON) networks. Such multilayer network enables the application of optimal load balancing between the packet and the optical layer, optimizing both the cost of the packet layer and the utilization of the WSON. To provide highly available services, redundant network resources need to be added to the network providing survivability against failures; generally speaking, the higher the survivability degree, the higher both the capital and the operational expenditures (CAPEX and OPEX, respectively) of the network. In this work, we design networks to meet specific availability objectives considering single failures in optical links, IP/MPLS nodes, and optoelectronic ports. The benefits of the designed networks are evaluated from an economic perspective defining costs and revenues models and using Net Present Value as a metric to evaluate future cash flows after an investment. To this end, CAPEX and OPEX, including power consumption and maintenance, and penalties as a consequence of service level agreement breaches are considered. Exhaustive numerical results on several reference network scenarios demonstrate how the value of the network can be maximized by tuning availability objectives.  相似文献   

10.
新型互联网业务迅速发展。使网络流量急剧增长,推动了对光通信容量的需求。同时,新型的互联网应用对带宽的需求具有不可预测性。这两方面因素驱动光网络朝着灵活、动态、高效的方向发展。可变带宽光网络可以在收发端根据传输距离、链路质量、业务需求动态调整传输速率、调制格式以匹配网络实际需求,提高了网络灵活性和网络生存性。可变带宽光网络关键技术包括可变带宽可重构光分插复用器、可变带宽收发机技术、可变带宽的电层技术和可变带宽管控层技术。  相似文献   

11.
Dealing with the explosive increase in the amount of Internet traffic requires high-speed and huge capacity Internet protocol (IP) backbone networks. Existing IP backbone networks are constructed using point-to-point wavelength-division-multiplexing (WDM) transmission systems, where all the wavelengths are terminated link-by-link, so that rather expensive optical/electrical conversions are necessary at every node. In these systems, since every IP packet is routed at each intermediate node based on the header information, a header processing bottleneck will occur when the node input traffic exceeds several hundreds of gigabits per second. In order to mitigate these problems, an optical cross-connect (OXC) function that employs wavelength routing of the optical paths (OPs) will provide an effective solution. This paper proposes a network design method where electrical and photonic multiprotocol label switching (MPLS) technologies are used; the network is referred to as a photonic IP network. We first propose new algorithms that minimize the network cost in a multilayered network comprising electrical label switched paths (LSPs) and optical LSPs (optical paths that are controlled using the MPLS mechanism). The particular point of the proposed algorithms is that they include different cost minimization scenarios appropriate for the different OLSP provisioning conditions that are chosen as the first step in the design stage. The effectiveness of the proposed algorithms and the benefits of the OLSPs are quantitatively evaluated through various simulations.  相似文献   

12.
In last decade,due to that the popularity of the internet, data--central traffic kept growing, some emerging networking requirements have been posed on the today‘s telecommunication networks,especially in the area of network survivability. Obviously, as a key networking problem, network reliability will be more and more important. The integration of different technologies such as ATM, SDH, and WDM in multilayer transport networks raises many questions regarding the coordination of the individual network layers.This problem is referred as multilayer network survivability. The integrated multilayer network survivability is investingated as well as the representation of an interworking strategy between different single layer survivability schemes in IP via generalized multiprotocol label switching over ootical netwnrk  相似文献   

13.
In last decade,due to that the popularity of the internet, data-central traffic kept growing,some emerging networking requirements have been posed on the todays telecommunication networks,especially in the area of network survivability.Obviously,as a key networking problem,network reliability will be more and more important.The integration of different technologies such as ATM,SDH,and WDM in multilayer transport networks raises many questions regarding the coordination of the individual network layers.This problem is referred as multilayer network survivability.The integrated multilayer network survivability is investingated as well as the representation of an interworking strategy between different single layer survivability schemes in IP via generalized multi-protocol label switching over optical network.  相似文献   

14.
Data-centric optical networks and their survivability   总被引:16,自引:0,他引:16  
The explosive growth of data traffic-for example, due to the popularity of the Internet-poses important emerging network requirements on today's telecommunication networks. This paper describes how core networks will evolve to optical transport networks (OTNs), which are optimized for the transport of data traffic, resulting in an IP-directly-over-OTN paradigm. Special attention is paid to the survivability of such data-centric optical networks. This becomes increasingly crucial since more and more traffic is multiplexed onto a single fiber (e.g., 160×10 Gb/s), implying that a single cable cut can affect incredible large traffic volumes. In particular, this paper is tackling multilayer survivability problems, since a data-centric optical network consists of at least an IP and optical layer. In practice, this means that the questions "in which layer or layers should survivability be provided?" and "if multiple layers are chosen for this purpose, then how should this functionality in these layers be coordinated?" have to be answered. In addition to a theoretical study, some case studies are presented in order to illustrate the relevance of the described issues and to help in strategic planning decisions. Two case studies are studying the problem from a capacity viewpoint. Another case study presents simulations from a timing/throughput performance viewpoint  相似文献   

15.
Multilayer traffic engineering (MLTE) allows coping with ever-increasing and varying traffic demands in IP-over-Optical multilayer networks. It utilizes cross-layer TE (Traffic Engineering) techniques to provision optical lightpath capacity to the IP/MPLS (Internet Protocol/ Multi-Protocol Label Switching) logical topology on-demand. Such provisioning however causes optical connection arrival rates that pose strong performance requirements to Routing and Wavelength Assignment (RWA) strategies. Collecting up-to-date network information for the RWA with rapidly changing network states can be quite difficult. Exposing optical layer state information to the IP layer in the overlay model, or transforming this optical layer information in a workable representation in an integrated control plane is similarly problematic. Prediction-Based Routing (PBR) has been proposed as a RWA mechanism for optical transport networks; it bases routing not on possibly inaccurate or outdated network state, but instead on previous connections set-up. In this article, we propose to implement PBR as the RWA mechanism in the optical layer of a multilayer network, and use the predictive capabilities of PBR to expose dynamic optical network information into the multilayer traffic engineering algorithm with minimal control plane overhead. Some simulations show the benefits of using the PBR in the optical layer for MLTE purposes.  相似文献   

16.
Protection approaches for dynamic traffic in IP/MPLS-over-WDM networks   总被引:3,自引:0,他引:3  
Due to the explosive growth of data-related traffic driven by the Internet, network reliability becomes an important issue. We investigate various protection approaches to handle failures for dynamic traffic demands in IP/MPLS-over-WDM networks. An LSP can be protected at either the IP/MPLS layer or the optical layer. In IP/MPLS layer protection, an LSP is protected by providing a link-disjoint backup LSP between its end nodes. In optical layer protection, an LSP is protected by the backup lightpath of each lightpath traversed by the LSP. We present two integrated routing algorithms: hop-based integrated routing algorithm and bandwidth-based integrated routing algorithm (BIRA) to set up the restorable bandwidth-guaranteed paths efficiently. Then we present a multilayer protection scheme for multiclass traffic in such networks. This scheme takes into account the different QoS and recovery requirements of the traffic to provide protection capability either at the MPLS layer or at the optical layer in a cost-effective manner. We use the connection blocking probability and number of optical-electrical-optical conversions as performance metrics to compare various protection approaches.  相似文献   

17.
The advent of high-capacity optical fiber has increased the impact of a network failure in high-speed networks since a large volume of data can be lost even in a short outage. Self-healing algorithms have previosly been proposed to achieve fast restoration from a failure, but their success greatly depends on how traffic is distributed and how spare capacity is dimensioned over the network when a failure happens. Thus, in order to offer better network survivability, it is crucial that a network manager realizes a restorable traffic assignment in response to changing traffic demand and facility network configuration. The authors address the problem of virtual path routing for survivable asynchronous transfer mode (ATM) networks. An algorithm is developed to find a virtual path configuration and bandwidth assignment that minimizes the expected amount of lost flow upon restoration from a network failure. The concept of two-step restoration is introduced to achieve fast restoration as well as optimal reconfiguration. The problem can be formulated as a nonlinear, nonsmooth multicommodity flow problem with linear constraints. A modified flow deviation method is developed to obtain a near-optimal solution, where premature convergence to a nonsmooth point could be avoided by adjusting an optimization parameter. The result of the performance evaluation indicates that the proposed routing scheme can detect the links that are vulnerable to a failure under the current traffic demand pattern and adjust a flow so as to improve the network survivability level  相似文献   

18.
Wei  Wei  Zeng  Qingji  Wang  Yun 《Photonic Network Communications》2004,8(3):267-284
In this paper, we study the problem of multi-layer integrated survivability (MLIS) for efficiently provisioning reliable traffic connections of arbitrary bandwidth granularities in the integrated optical Internet. We decompose the MLIS problem into three sub-problems: survivable strategies design (SSD), spare capacity dimensioning (SCD), and dynamic survivable routing (DSR). First, a review of network survivability in multi-layer IP/WDM networks is provided. Then, multi-layer survivability strategies are proposed and it is observed how these strategies could be applied to the integrated optical Internet architecture. We also present an enhanced integrated shared pool (ISP) method for solving the static MLIS problem (i.e., the SCD sub-problem) and the priority-based integer programming formulations are also given. Moreover, we design a novel scheme called the differentiated integrated survivability algorithm (DISA) to solve the dynamic MLIS problem (i.e., the DSR sub-problem), which employs flexible survivable routing strategies according to the priority of the traffic resilience request. Performance simulation results of DISA show that our adaptive survival schemes perform much better in terms of traffic blocking ratio, spare resource requirement, and average traffic recovery ratio compared with other solutions in the optical Internet.  相似文献   

19.
IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures.  相似文献   

20.
RATES: a server for MPLS traffic engineering   总被引:1,自引:0,他引:1  
It has been suggested that one of the most significant reasons for multiprotocol label switching (MPLS) network deployment is network traffic engineering. The goal of traffic engineering is to make the best use of the network infrastructure, and this is facilitates by the explicit routing feature of MPLS, which allows many of the shortcomings associated with current IP routing schemes to be addressed. This article describes a software system called Routing and Traffic Engineering Server (RATES) developed for MPLS traffic engineering. It also describes some new routing ideas incorporated in RATES for MPLS explicit path selection. The RATES implementation consists of a policy and flow database, a browser-based interface for policy definition and entering resource provisioning requests, and a Common Open Policy Service protocol server-client implementation for communicating paths and resource information to edge routers. RATES also uses the OSPF topology database for dynamically obtaining link state information. RATES can set up bandwidth-guaranteed label-switched (LSPs) between specified ingress-egress pairs. The path selection for LSPs is on a new minimum-interference routing algorithm aimed at making the best use of network infrastructure in an online environment where LSP requests arrive one by one with no a priori information about future requests. Although developed for an MPLS application, the RATES implementation has many similarities in components to an intradomain differentiated services bandwidth broker  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号