首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An energy-efficient virtual multiple-input multiple-output (MIMO)-based communication architecture is proposed for distributed and cooperative wireless sensor networks. Assuming a space-time block coding (STBC) based MIMO system, the energy and delay efficiencies of the proposed scheme are derived using semi-analytic techniques. The dependence of these efficiency values on physical channel propagation parameters, fading coherence time and the amount of required training is also investigated. The results show that with judicious choice of design parameters the virtual MIMO technique can be made to provide significant energy and delay efficiencies, even after allowing for additional training overheads.  相似文献   

2.
We consider the problem of maximizing the lifetime of a given multicast connection in a wireless network of energy-constrained (e.g., battery-operated) nodes, by choosing ideal transmission power levels for the nodes relaying the connection. We distinguish between two basic operating modes: In a static power assignment, the power levels of the nodes are set at the beginning and remain unchanged until the nodes are depleted of energy. In a dynamic power schedule, the powers can be adjusted during operation. We show that while lifetime-maximizing static power assignments can be found in polynomial time, for dynamic schedules the problem becomes NP-hard. We introduce two approximation heuristics for the dynamic case, and experimentally verify that the lifetime of a dynamically adjusted multicast connection can be made several times longer than what can be achieved by the best possible static assignment.  相似文献   

3.
Path length, path reliability, and sensor energy-consumption are three major constraints affecting routing in resource constrained, unreliable wireless sensor networks. By considering the implicit collaborative imperative for sensors to achieve overall network objectives subject to individual resource consumption, we develop a game-theoretic model of reliable, length and energy-constrained, sensor-centric information routing in sensor networks. We define two distinct payoff (benefit) functions and show that computing optimally reliable energy-constrained paths is NP-Hard under both models for arbitrary sensor networks. We then show that optimal length-constrained paths can be computed in polynomial time in a distributed manner (using O(E) messages) for popular sensor network implementations using geographic routing. We also develop sensor-centric metrics called path weakness to measure the qualitative performance of different routing schemes and provide theoretical limits on the inapproximability of computing paths with bounded weakness. Heuristics for computing optimal paths in arbitrary sensor networks are described along with simulation results comparing performance with other routing algorithms.  相似文献   

4.
Design challenges for energy-constrained ad hoc wireless networks   总被引:15,自引:0,他引:15  
Ad hoc wireless networks enable new and exciting applications, but also pose significant technical challenges. In this article we give a brief overview of ad hoc wireless networks and their applications with a particular emphasis on energy constraints. We then discuss advances in the link, multiple access, network, and application protocols for these networks. We show that cross-layer design of these protocols is imperative to meet emerging application requirements, particularly when energy is a limited resource.  相似文献   

5.
Two new incremental models for online anomaly detection in data streams at nodes in wireless sensor networks are discussed. These models are incremental versions of a model that uses ellipsoids to detect first, second, and higher‐ordered anomalies in arrears. The incremental versions can also be used this way but have additional capabilities offered by processing data incrementally as they arrive in time. Specifically, they can detect anomalies ‘on‐the‐fly’ in near real time. They can also be used to track temporal changes in near real‐time because of sensor drift, cyclic variation, or seasonal changes. One of the new models has a mechanism that enables graceful degradation of inputs in the distant past (fading memory). Three real datasets from single sensors in deployed environmental monitoring networks are used to illustrate various facets of the new models. Examples compare the incremental version with the previous batch and dynamic models and show that the incremental versions can detect various types of dynamic anomalies in near real time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an asynchronous cascading wake-up MAC protocol for heterogeneous traffic gathering in low-power wireless sensor networks. It jointly considers energy/delay optimization and switches between two modes, according to the traffic type and delay requirements. The first mode is high duty cycle, where energy is traded-off for a reduced latency in presence of realtime traffic (RT). The second mode is low duty cycle, which is used for non-realtime traffic and gives more priority to energy saving. The proposed protocol, DuoMAC, has many features. First, it quietly adjusts the wake-up of a node according to (1) its parent’s wake-up time and, (2) its estimated load. Second, it incorporates a service differentiation through an improved contention window adaptation to meet delay requirements. A comprehensive analysis is provided in the paper to investigate the effectiveness of the proposed protocol in comparison with some state-of-the-art energy-delay efficient duty-cycled MAC protocols, namely DMAC, LL-MAC, and Diff-MAC. The network lifetime and the maximum end-to-end packet latency are adequately modeled, and numerically analyzed. The results show that LL-MAC has the best performance in terms of energy saving, while DuoMAC outperforms all the protocols in terms of delay reduction. To balance the delay/energy objectives, a runtime parameter adaptation mechanism has been integrated to DuoMAC. The mechanism relies on a constrained optimization problem with energy minimization in the objective function, constrained by the delay required for RT. The proposed protocol has been implemented on real motes using MicaZ and TinyOS. Experimental results show that the protocol clearly outperforms LL-MAC in terms of latency reduction, and more importantly, that the runtime parameter adaptation provides additional reduction of the latency while further decreasing the energy cost.  相似文献   

7.
Aging analysis in large-scale wireless sensor networks   总被引:1,自引:0,他引:1  
Jae-Joon  Bhaskar  C.-C. Jay   《Ad hoc Networks》2008,6(7):1117-1133
Most research on the lifetime of wireless sensor networks has focused primarily on the energy depletion of the very first node. In this study, we analyze the entire aging process of the sensor network in a periodic data gathering application. In sparse node deployments, it is observed that the existence of multiple alternate paths to a sink leads to a power law relation between connectivity to a sink and hop levels, where the probability of connection to a sink decreases in proportion to the hop level with an exponent, when device failures occur over time. Then, we provide distance-level analysis for the dense deployment case by taking into account the re-construction of a data gathering tree and workload shift caused by the energy depletion of nodes with larger workload. Extensive simulation results obtained with a realistic wireless link model are compared to our analytical results. Finally, we show through an analysis of the aging of first-hop nodes that increasing node density with a fixed radio range does not affect the network disconnection time.  相似文献   

8.
多跳无线传感器网络吞吐量分析   总被引:1,自引:0,他引:1  
柯欣  孙利民 《通信学报》2007,28(9):78-84
针对无线传感器网络这种典型多跳网络的吞吐量进行了理论分析,提出了在线性网络路由的情况下的网络吞吐量的计算模型,并通过NS-2仿真模拟进行了验证。发现吞吐量随着网络节点数目的增加而呈现出一种类似于简谐振动的变化,并且最终收敛到一个稳定值。这一规律揭示了无线传感器网络的节点行为特征与网络吞吐量之间的内在联系,对网络性能的优化具有指导性的帮助。  相似文献   

9.

In this paper, we generalize conventional time division multiple access (TDMA) wireless networks to a new type of wireless networks coined generalized wireless powered communication networks (g-WPCNs). Our prime objective is to optimize the design of g-WPCNs where nodes are equipped with radio frequency (RF) energy harvesting circuitries along with constant energy supplies. This constitutes an important step towards a generalized optimization framework for more realistic systems, beyond prior studies where nodes are solely powered by the inherently limited RF energy harvesting. Towards this objective, we formulate two optimization problems with different objective functions, namely, maximizing the sum throughput and maximizing the minimum throughput (maxmin) to address fairness. First, we study the sum throughput maximization problem, investigate its complexity and solve it efficiently using an algorithm based on alternating optimization approach. Afterwards, we shift our attention to the maxmin optimization problem to improve the fairness limitations associated with the sum throughput maximization problem. The proposed problem is generalized, compared to prior work, as it seemlessly lends itself to prior formulations in the literature as special cases representing extreme scenarios, namely, conventional TDMA wireless networks (no RF energy harvesting) and standard WPCNs, with only RF energy harvesting nodes. In addition, the generalized formulation encompasses a scenario of practical interest we introduce, namely, WPCNs with two types of nodes (with and without RF energy harvesting capability) where legacy nodes without RF energy harvesting can be utilized to enhance the system sum throughput, even beyond WPCNs with all RF energy harvesting nodes studied earlier in the literature. We establish the convexity of all formulated problems which opens room for efficient solution using standard techniques. Our numerical results show that conventional TDMA wireless networks and WPCNs with only RF energy harvesting nodes are considered as lower bounds on the performance of the generalized problem setting in terms of the maximum sum throughput and maxmin throughput. Moreover, the results reveal valuable insights and throughput-fairness trade-offs unique to our new problem setting.

  相似文献   

10.
With sensor networks on the verge of deployment, security issues pertaining to the sensor networks are in the limelight. Though the security in sensor networks share many characteristics with wireless ad hoc networks, the two fields are rapidly diverging due to the fundamental differences between the make‐up and goals of the two types of networks. Perhaps the greatest dividing difference is the energy and computational abilities. Sensor nodes are typically smaller, less powerful, and more prone to failure than nodes in an ad hoc network. These differences indicate that protocols that are valid in the context of ad‐hoc networks may not be directly applicable for sensor networks. In this paper, we survey the state of art in securing wireless sensor networks. We review several protocols that provide security in sensor networks, with an emphasis on authentication, key management and distribution, secure routing, and methods for intrusion detection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Relay sensor placement in wireless sensor networks   总被引:4,自引:0,他引:4  
This paper addresses the following relay sensor placement problem: given the set of duty sensors in the plane and the upper bound of the transmission range, compute the minimum number of relay sensors such that the induced topology by all sensors is globally connected. This problem is motivated by practically considering the tradeoff among performance, lifetime, and cost when designing sensor networks. In our study, this problem is modelled by a NP-hard network optimization problem named Steiner Minimum Tree with Minimum number of Steiner Points and bounded edge length (SMT-MSP). In this paper, we propose two approximate algorithms, and conduct detailed performance analysis. The first algorithm has a performance ratio of 3 and the second has a performance ratio of 2.5. Xiuzhen Cheng is an Assistant Professor in the Department of Computer Science at the George Washington University. She received her MS and PhD degrees in Computer Science from the University of Minnesota - Twin Cities in 2000 and 2002, respectively. Her current research interests include Wireless and Mobile Computing, Sensor Networks, Wireless Security, Statistical Pattern Recognition, Approximation Algorithm Design and Analysis, and Computational Medicine. She is an editor for the International Journal on Ad Hoc and Ubiquitous Computing and the International Journal of Sensor Networks. Dr. Cheng is a member of IEEE and ACM. She received the National Science Foundation CAREER Award in 2004. Ding-Zhu Du received his M.S. degree in 1982 from Institute of Applied Mathematics, Chinese Academy of Sciences, and his Ph.D. degree in 1985 from the University of California at Santa Barbara. He worked at Mathematical Sciences Research Institutea, Berkeley in 1985-86, at MIT in 1986-87, and at Princeton University in 1990-91. He was an associate-professor/professor at Department of Computer Science and Engineering, University of Minnesota in 1991-2005, a professor at City University of Hong Kong in 1998-1999, a research professor at Institute of Applied Mathematics, Chinese Academy of Sciences in 1987-2002, and a Program Director at National Science Foundation of USA in 2002-2005. Currently, he is a professor at Department of Computer Science, University of Texas at Dallas and the Dean of Science at Xi’an Jiaotong University. His research interests include design and analysis of algorithms for combinatorial optimization problems in communication networks and bioinformatics. He has published more than 140 journal papers and 10 written books. He is the editor-in-chief of Journal of Combinatorial Optimization and book series on Network Theory and Applications. He is also in editorial boards of more than 15 journals. Lusheng Wang received his PhD degree from McMaster University in 1995. He is an associate professor at City University of Hong Kong. His research interests include networks, algorithms and Bioinformatics. He is a member of IEEE and IEEE Computer Society. Baogang Xu received his PhD degree from Shandong University in 1997. He is a professor at Nanjing Normal University. His research interests include graph theory and algorithms on graphs.  相似文献   

12.
Recent advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks that consist of many low-power, low-cost, and small-size sensor nodes. Sensor networks hold the promise of facilitating large-scale and real-time data processing in complex environments. Security is critical for many sensor network applications, such as military target tracking and security monitoring. To provide security and privacy to small sensor nodes is challenging, due to the limited capabilities of sensor nodes in terms of computation, communication, memory/storage, and energy supply. In this article we survey the state of the art in research on sensor network security.  相似文献   

13.
We consider the problem of maximizing the lifetime of a given multicast connection in wireless networks that use directional antennas and have limited energy resources. We provide a globally optimal solution to this problem for a special case of using omni-directional antennas. This graph theoretic approach provides us insights into more general case of using directional antennas, and inspires us to produce a group of heuristic algorithms. Experimental results show that our algorithms outperform other energy-aware multicast algorithms significantly in terms of multicast lifetime.
Song GuoEmail:
  相似文献   

14.
The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE), Low Energy Adaptive Cluster Head routing (LEACH), and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.  相似文献   

15.
陈权  高宏 《通信学报》2014,35(6):13-109
基于链路质量给出了路径满足实时性概率的上界,并证明了计算其上界的时间复杂度为指数级。另外在考虑链路质量的基础上,提出了一种在给定的延迟阈值下最大化端到端数据分组发送成功概率的贪心算法(RROP)。根据给定的延迟阈值和链路质量,RROP算法通过设置每跳链路的最大重传次数来优化端到端数据分组发送成功的概率。证明该算法能够在多项式时间内找到最优解并且通过该最优解获得路径满足实时性概率的一个近似最优的下界。实验结果表明给出的路径延迟分析上界和下界是准确的,并且提出的RROP算法在节省能量和满足实时性上比传统的方法能够获得高出10%以上的性能。  相似文献   

16.
To improve the capacity of multi-hop wireless networks, protocols based on spatial reuse of frequencies with multiple orthogonal channels have been studied earlier. This paper focuses on the design, implementation and analysis of multiple-channel based wireless sensor networks (WSN). The objectives of the paper are two-fold. The first objective is to identify the sensor node bottlenecks in implementing multi-channel MAC protocols. In particular, a control channel based MAC protocol is implemented and analyzed. The analysis shows the gap between reality and simulation models due to system overheads in implementing these protocols. The second objective is to understand the capacity limits of multi-hop paths in a WSN with multiple channels. A generic channel allocation scheme based on k-distance coloring technique is developed. The protocols and mechanisms were implemented on a testbed consisting of Crossbow MicaZ and TelosB motes using IEEE 802.15.4 compliant radios. Throughput and delivery ratio measurements from the testbed are reported. Some of these measurements are incorporated in a discrete-event simulator model, based on OMNET++ 4.0 with Mobility Framework, for more detailed throughput analysis. The results show that it is possible to achieve 90 % delivery ratio over paths consisting of as many as 18 hops, in a 10 × 10 grid topology using 16 channels.  相似文献   

17.
Since energy is scarce in sensor nodes, wireless sensor networks aim to transmit as few packets as possible. To achieve this goal, sensor protocols often aggregate measured data from multiple sensor nodes into a single packet. In this paper, a survey of aggregation techniques and methods is given. Based on this survey, it is concluded that there are currently several dependencies between the aggregation method and the behavior of the other network layers. As a result, existing aggregation methods can often not be combined with different routing protocols. To remedy this shortcoming, the paper introduces a new ‘non-intrusive’ aggregation approach which is independent of the routing protocol. The proposed aggregation method is evaluated and compared to traditional aggregation approaches using a large-scale sensor testbed of 200 TMoteSky sensor nodes. Our experimental results indicate that existing aggregation approaches are only suited for a limited set of network scenarios. In addition, it is shown both mathematically and experimentally that our approach outperforms existing non-intrusive techniques in a wide range of scenarios.  相似文献   

18.
Mobility-based communication in wireless sensor networks   总被引:2,自引:0,他引:2  
  相似文献   

19.
Multimedia communication in wireless sensor networks   总被引:1,自引:0,他引:1  
The technological advances in Micro ElectroMechanical Systems (Mems) and wireless communications have enabled the realization of wireless sensor networks (Wsn) comprised of large number of low-cost, low-power, multifunctional sensor nodes. These tiny sensor nodes communicate in short distances and collaboratively work toward fulfilling the application specific objectives ofWsn. However, realization of wide range of envisionedWsn applications necessitates effective communication protocols which can address the unique challenges posed by theWsn paradigm. Since many of these envisioned applications may also involve in collecting information in the form of multimedia such as audio, image, and video; additional challenges due to the unique requirements of multimedia delivery overWsn, e.g., diverse reliability requirements, time constraints, high bandwidth demands, must be addressed as well. Thus far, vast majority of the research efforts has been focused on addressing the problems of conventional data communication inWsn. Therefore, there exists an urgent need for research on the problems of multimedia communication inWsn. In this paper, a survey of the research challenges and the current status of the literature on the multimedia communication inWsn is presented. More specifically, the multimediaWsn applications, factors influencing multimedia delivery overWsn, currently proposed solutions in application, transport, and network layers, are pointed out along with their shortcomings and open research issues.  相似文献   

20.
Ossama  Marwan  Srinivasan   《Ad hoc Networks》2008,6(7):1078-1097
In scenarios where sensors are placed randomly, redundant deployment is essential for ensuring adequate field coverage. This redundancy needs to be efficiently exploited by periodically selecting a subset of nodes (referred to as a “cover”) that actively monitor the field, and putting the remaining nodes to sleep. We consider networks in which sensors are not aware of their locations or the relative directions of their neighbors. We develop several geometric and density-based tests that enable a location-unaware sensor to intelligently determine whether it should turn itself off without degrading the quality of field coverage. These tests rely on distance measurements and exchanged two-hop neighborhood information. We design an algorithm (LUC) that exploits these tests for computing covers. Based on this algorithm, we propose two distributed protocols (LUC-I and LUC-P) that periodically select covers and switch between them so as to extend the network lifetime and tolerate unexpected failures. Our protocols are highly efficient in terms of message overhead and processing complexity. We implement LUC-I in TinyOS and evaluate it using the TOSSIM simulator. Experimental results indicate that our approach significantly prolongs the network lifetime and achieves comparable performance to location-aware protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号