首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main flow features of three-dimensional plunge pool scour are explored in this experimental research for steady flow conditions. These include the maximum depth of the scour hole, its streamwise geometry, and the maximum width, the maximum height of the ridge, its shape in plan view, and its profile. Expressions for all these parameters are presented in terms of the basic scour variables, including the approach flow densimetric Froude number, the jet impact angle, the jet diameter, and the tailwater elevation above the originally horizontal sediment bed. This research is based on a previous work relating to two-dimensional plunge pool scour. Differences between the two phenomena are outlined, and the results are discussed in terms of engineering applications. The results of the two works allow for the prediction of the most salient features of plunge pool scour for both the dynamic and the static scour holes.  相似文献   

2.
Plunge pool scour involves a significant risk with trajectory spillways because of structural undermining at a dam foot or destabilization of adjacent valley slopes. An experimental program towards the understanding of plane plunge pool scour of a completely disintegrated rock surface was conducted, in which the following items received attention: jet shape, jet velocity, jet air content, tailwater elevation, granulometry, upstream flow to the scour hole, and the end scour profile in terms of the basic scour features. These effects were experimentally investigated based on a systematic variation of the governing scour parameters. The results of this paper allow answering questions that have so far not been addressed. Design equations were proposed to sketch the main tendency of the data sets. The significant effect of the densimetric particle Froude number was substantiated. This research may be used to estimate the prominent scour features for nearly two-dimensional jet arrangements involving a pre-aerated high-speed flow.  相似文献   

3.
The temporal development of plunge pool scour was investigated using a novel experimental approach. Longitudinal profiles along the scour hole were recorded with an optical method to allow its definition at any time, from the initiation of scour to nearly the end-scour condition. The characteristics of the scour hole geometry were investigated, namely the maximum scour hole depth, the maximum ridge height, and their locations relative to the scour hole origin. It is demonstrated that the evolution is logarithmic, similar to that found for bridge pier and abutment scour. A distinction is further made between the developing and the developed scour hole phases. The main issue of the present research was to define the developed scour hole characteristics because the developing scour phase is influenced by turbulence features that may be difficult to assess. This work therefore allows for an appreciation of the temporal evolution of a scour process of engineering interest.  相似文献   

4.
Bridge Pier Scour under Flood Waves   总被引:1,自引:0,他引:1  
The effect of a single-peaked flood wave on pier scour is investigated both theoretically and experimentally. The conditions considered involve clear-water scour of a cohesionless material of given median sediment size and sediment nonuniformity, an approach flow characterized by a flow depth and velocity, a circular-shaped cylindrical bridge pier, and a flood hydrograph defined by its time to peak and peak discharge. A previously proposed formula for scour advance under a constant discharge was applied to the unsteady approach flow. The generalized temporal scour development along with the end scour depth are presented in terms of mainly the densimetric particle Froude number based on the maximum approach flow velocity and the median sediment size. The effect of the remaining parameters on the end scour depth is discussed and predictions are demonstrated to be essentially in agreement with model observations.  相似文献   

5.
6.
7.
To protect hydraulic structures such as spillways, chutes, and bottom outlets against cavitation damage, air is normally added by means of aerators in regions where the cavitation number falls below a critical value. Although aerators have been investigated for more than 30 years, the current design methods for aerator spacing are not reliable. The detrainment process was not previously investigated in detail because of limited laboratory instrumentation. The research presented in this paper provides new model data for hydraulic chutes of variable bottom slope. An advanced remote-controlled, fiber-optical instrumentation was employed to investigate the streamwise development of air concentration contours, velocity contours, and air bubble size along a 14-m model chute. The main hydraulic parameters such as bottom slope, inflow Froude number, inflow depth, and two distinctly different air supply devices for air-water flow generation were employed. Results enable prediction of the reduction of bottom and average air concentration, depending on the inflow air concentration and the chute slope. The minimum air concentration is proven to be a function of the streamwise Froude number. The point of minimum air concentration is constrained by the point of air inception. Downstream of this point the air concentration increases from the surface aeration, depending on the chute slope.  相似文献   

8.
Scour of rock may occur downstream of dam spillways, as a result of the impact of high-velocity jets. The phenomenon is traditionally assessed by means of (semi-) empirical methods. These partially neglect basic physical processes responsible for rock mass breakup. Therefore, a model to evaluate the ultimate depth and time evolution of scour in jointed rock is presented. The model is based on near-prototype scaled experimental investigations of transient water pressures in artificially created rock joints and on a numerical modeling of the measured pressures. It describes two different ways of rock mass destruction, i.e., failure by instantaneous or progressive breakup of closed-end rock joints, and failure by dynamic ejection of single rock blocks. The corresponding computational methods are easily applicable to practice, without neglecting relevant physics. The basic principles are outlined and applied to the well-known scour hole at Cabora-Bassa Dam.  相似文献   

9.
A series of experiments was conducted to investigate the influence of aeration on plane jet scour. The scour holes caused by the aerated and the nonaerated jets were compared under the same conditions of jet velocity, water discharge per unit width, and tailwater depth. A quantitative relationship between the air concentration of jet and the relative scour depth was established, which is not affected by jet velocity and water discharge per unit width. The profile of the scour hole was found to mainly depend on the scour depth under the same conditions of bed material and tailwater depth and affected very little by the air concentration itself in the test range. The aeration influences the shape of the scour hole mainly through decreasing the scour depth. The scour holes formed under aerated and nonaerated conditions are self-similar.  相似文献   

10.
Results of an experimental study on clear-water scour at submerged cylindrical obstacles (circular cylinders) in uniform bed sediments under steady flow are presented. The scour depths at submerged circular cylinders are compared with the scour depths at corresponding unsubmerged cylinders (extended above the free surface of flow) of the same diameters under similar flow and bed sediment conditions. The scour depth decreases with an increase in submergence ratio. A submergence factor is introduced to determine the scour depth at a submerged cylinder from the information of the scour depth at an unsubmerged cylinder of the same diameter. In addition, the flow fields along the upstream vertical plane of symmetry of unsubmerged and submerged cylinders are presented through vector plots, which reveal that the dimension and strength of the horseshoe vortex decreases with an increase in submergence ratio. The horseshoe vortex circulations, which decrease with an increase in submergence ratio, are computed from the vorticity contours by using the Stokes theorem.  相似文献   

11.
Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers   总被引:3,自引:0,他引:3  
The outcome of an experimental study on the turbulent horseshoe vortex flow within the developing (intermediate stages and equilibrium) scour holes at cylindrical piers measured by an acoustic Doppler velocimeter (ADV) are presented. Since the primary objective was to analyze the evolution of the turbulent flow characteristics of a horseshoe vortex within a developing scour hole, the flow zone downstream of the pier was beyond the scope of the investigation. Experiments were conducted for the approaching flow having undisturbed flow depth ( = 0.25?m) greater than twice the pier diameter and the depth-averaged approaching flow velocity ( = 0.357?m/s) about 95% of the critical velocity of the uniform bed sand that had a median diameter of 0.81?mm. The flow measurements by the ADV were taken within the intermediate (having depths of 0.25, 0.5, and 0.75 times the equilibrium scour depth) and equilibrium scour holes (frozen by spraying glue) at a circular pier of diameter 0.12?m. In order to have a comparative study, the ADV measurements within an equilibrium scour hole at a square pier (side facing the approaching flow) of sides equaling the diameter of the circular pier were also taken. The contours of the time-averaged velocities, turbulence intensities, and Reynolds stresses at different azimuthal planes (0, 45, and 90°) are presented. Vector plots of the flow field at azimuthal planes reveal the evolution of the characteristics of the horseshoe vortex flow associated with a downflow from intermediate stages to equilibrium condition of scour holes. The bed-shear stresses are determined from the Reynolds stress distributions. The flow characteristics of the horseshoe vortex are discussed from the point of view of the similarity with the velocity and turbulence characteristic scales. The imperative observation is that the flow and turbulence intensities in the horseshoe vortex flow in a developing scour hole are reasonably similar.  相似文献   

12.
Neural Networks for Estimation of Scour Downstream of a Ski-Jump Bucket   总被引:6,自引:0,他引:6  
The estimation of scour downstream of a ski-jump bucket has remained inconclusive, despite analysis of numerous prototypes as well as hydraulic model studies in the past. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the regression in the form of neural networks. The depth of the scour hole developed along with its width and length is predicted using neural network models. A network architecture complete with trained values of connection weight and bias and requiring input of grouped parameters pertaining to discharge head, tail water channel depth, bucket radius, lip angle, and median sediment size is recommended in order to predict the depth, the location of maximum scour, as well as the width of scour hole. The neural network predictions have been compared with traditional statistical schemes. Although the common and simple feed forward back propagation network took a very long time to train as compared to some advanced schemes, it was found to impart equally reliable training as the latter. Use of causative variables in grouped forms was found to be more rewarding than that of their raw forms probably due to lesser scaling effect.  相似文献   

13.
An experimental program was carried out to understand scour caused by a plane wall jet. A two-dimensional laser Doppler anemometer was used to characterize the velocity field at various locations in the scour hole region. Observations indicate that different types of flow structures influence scour at different time periods. Based on the present tests, the entire test duration is divided into five time zones. Following vigorous scour caused principally by jet shear forces and impingement at the start of the test and during early time periods, the flow was characterized by the presence of longitudinal axial vortices, turbulent bursts, and movement of the jet impingement point during the later stages. Attempts were made to distinguish the fluid structures at asymptotic conditions. The scour hole region was characterized by the presence of randomly forming and disappearing streaks, laterally located concave shaped depressions, rolling and ejection of the bed material. Through analysis of higher order moments and quadrant decomposition, sweep and ejection type events were observed, which can potentially contribute to scour.  相似文献   

14.
Control of Scour at Vertical Circular Piles under Waves and Current   总被引:1,自引:0,他引:1  
An experimental study on the control of scour at vertical circular piles under monochromatic waves and a steady current is presented. The experiments on wave and steady currents were carried out under live-bed and clear-water regimes, respectively. In waves, splitter plate attached to the pile along the vertical plane of symmetry and threaded pile (helical wires or cables wrapped spirally on the pile to form threads) were found to be effective to reduce the scour depth. For the Keulegan–Carpenter numbers 6–100, the vortex shedding is the main mechanism of scour under waves. The splitter plate and threaded pile disrupt the vortex shedding. The average reduction of the scour depth by the splitter plate was 61.6%. For threaded piles, different combinations of cable and pile sizes were tested, and the best combination was found for a cable–pile diameter ratio equaling 0.75, in which average scour depth reduction was 51.1%. The average reductions of scour depths for other cable–pile diameter ratios of 0.33 and 0.5 were 43.2 and 48.1%, respectively. On the other hand, in a steady current, the threaded pile proved to be effective to control scour depth to a great extent. Cables wrapped spirally forming threads on the pile help to weaken the downflow and horseshoe vortex, which are the principal agents of scour under a steady current. The experimental results showed that the scour depth consistently decreases with an increase in cable diameter and the number of threads, and with a decrease in thread angle. The maximum reduction of scour depth observed was 46.3% by using a triple threaded pile having a thread angle of 15° and a cable–pile diameter ratio of 0.1. The proposed methods of controlling scour are easy to install and are economical.  相似文献   

15.
This note focuses on the temporal and spatial evolution of local scour below low-head spillways. Steady-flow experiments were carried out in a 1-m wide and 20-m long rectangular straight channel. The jet was generated by an ogee-crest spillway followed by a positive-step stilling basin. Nearly uniform sandy beds were generally tested, but additional tests were also performed with a special bed of lead spheres. To circumvent the combination of local and general scour phenomena, tailwater depths were set such that tailwater flow intensities were below the threshold of sediment motion. As a consequence, for each run a submerged hydraulic jump formed. Tests were of long durations (of order of days) mainly to achieve conditions of quasi-equilibrium. Based on the data collected, literature approaches are discussed. Then, empirical models are proposed to estimate: (1) the maximum scour depth at the quasi-equilibrium stage and its horizontal distance from edge of stilling basin; (2) the time variation of scour depth; and (3) the axial scour profiles. The proposed equations agree well with experimental data. Findings also highlight that affinity rather than similarity may be the typical property of low-angle eroding jets.  相似文献   

16.
A new approach for predicting local scour downstream of grade-control structures based on neural networks is presented. An explicit neural networks formulation (ENNF) is developed using a transfer function (sigmoid) and optimal weights obtained from a training process. A genetic algorithm was used to optimize the neural network architecture and the optimal weights for input and output parameters were obtained using the Levenberg–Marquardt back-propagation algorithm. Experimental data available in the literature, including large-scale results were used for training and validation of the proposed model. The predictive performance of the ENNF was found superior to other regression-based equations and the robustness of ENNF was evaluated using field data.  相似文献   

17.
The hydrodynamic pressures due to jets impinging on plunge pools must be taken into account in the stability design of pool floor concrete slabs. The contraction joints between slabs are normally sealed with waterstops, which prevent the transmission to the foundation of the pressures applied on the upper faces of the slabs. However, a waterstop failure will allow pressure transmission to the foundation, inducing uplift forces on the slabs. The use of open joints might also become a feasible solution for the lining of plunge pool floors if the pressure field that develops around each slab could be adequately evaluated. This paper presents an analytical model and experimental research developed to assess the forces on plunge pool slabs, considering either open or closed. The influence of the relative width of the contraction joints and the joint between the slabs and the foundation is analyzed. The mean value and standard deviation of the hydrodynamic vertical force are determined based on point pressure measurements, and their relative importance is discussed.  相似文献   

18.
For the last three decades, research focused on steep stepped chutes. Few studies considered flat-slope stepped geometries such as stepped storm waterways or culverts. In this study, experiments were conducted in a large, flat stepped chute (θ=3.4°) based upon a Froude similitude. Three basic flow regimes were observed: nappe flow without hydraulic jump, transition flow, and skimming flow. Detailed air–water flow measurements were conducted. The results allow a complete characterization of the air concentration and bubble count rate distributions, as well as an accurate estimate of the rate of energy dissipation. The flow resistance, expressed in terms of a modified friction slope, was found to be about 2.5 times greater than in smooth-chute flow. A comparison between smooth- and stepped-invert flows shows that greater aeration and larger residence times take place in the latter geometry. The result confirms the air–water mass transfer potential of stepped cascades, even for flat slopes (θ<5°).  相似文献   

19.
The upward seepage through the bed sediment downstream of an apron of a sluice gate structure is a common occurrence due to afflux of the flow level between the upstream and downstream reaches of a sluice gate. The result of an experimental investigation on the characteristics of the scour hole and the flow-field downstream of an apron due to submerged jets under the influence of upward seepage through the bed sediment is presented. Experiments were run for the conditions of submerged jets, having submergence factors from 0.99 to 1.72 and jet Froude numbers from 3.15 to 4.87, over beds of sediments (median sizes = 0.8, 1.86, and 3?mm) downstream of an apron under upward seepage velocities. The characteristic lengths of the scour hole determined from the scour profiles are: the maximum equilibrium scour depth, the horizontal distance of the location of maximum scour depth from the edge of the apron, the horizontal extent of the scour hole from the edge of the apron, the dune height, and the horizontal distance of the dune crest from the edge of the apron, all of which were found to increase with an increase in the seepage velocity. Using experimental results, the time variation of the scour depth is scaled by an exponential law, where the nondimensional time scale decreases linearly with an increase in the ratio of the seepage velocity to the issuing jet velocity. The flow field in the submerged jets over both the apron and within the scour hole was detected using an acoustic Doppler velocimeter. The vertical distributions of time-averaged velocities, turbulence intensities and Reynolds stress at different streamwise distances, and the horizontal distribution of bed-shear stress are plotted for the conditions of scour holes with and without upward seepage. Vector plots of the flow field show that the rate of decay of the submerged jet decreases with an increase in the seepage velocity. The flow characteristics in the scour holes are analyzed in the context of the influence of upward seepage velocity on the decay of the velocity and turbulence intensities and the growth of the boundary layer.  相似文献   

20.
This paper presents the results of an observational study related to the behavior of drainage sewers under conditions of hydraulic overloading. Specifically, the investigation focuses on the interaction of water and trapped air in surcharging drainage and pressurized pipeline systems, by studying the air–water flow behavior in a rapidly filling horizontal pipe. Air–water interface patterns, air entrainment, and air release through an orifice at the pipe end are documented photographically. Synchronously recorded pressure traces are also presented to illustrate the relation between the air–water phase evolution and the pressure oscillation patterns. Depending on the air release rate of the orifice, there are three types of pressure oscillation behavior, each corresponding to a particular behavior of the air–water interface in the rapidly filling horizontal pipe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号