首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stir zone microstructure, crystallographic texture, temperature and strain rate in the stir zones produced during Al 2024 spot welding using different tool rotational speed settings are investigated. The calculated strain rate during spot welding decreases from 1600 to 0.6 s−1 when the tool rotational speed increases from 750 to 3000 rpm. The low strain rate values are associated with tool slippage resulting from spontaneous melting of S phase particles at temperatures ≥490 °C. However, the calculated strain rate is 1600 s−1 in Al 2024 spot welds made using tool rotational speed of 750 rpm since the temperature never reaches 490 °C. Material transfers downwards via that pin thread during the dwell period in Al 2024 spot welding. It is proposed that this downward transfer of material provides a continuous supply of undissolved S phase particles, which melt spontaneously when the welding parameter settings produce stir zone temperatures ≥490 °C. A weak crystallographic texture where the {100} planes are oriented at about 45° to the θ-direction exists in the stir zones of spot welds made using different tool rotational speeds (from 750 to 3000 rpm). Another crystallographic texture where the {100} planes are parallel to the Z-direction (to the tool axis) is stronger in spot welds made using higher tool rotational speed settings. Also, material located at the root of the pin thread has a quite different crystallographic texture from that in the bulk of the stir zone.  相似文献   

2.
The formation of local melted films during friction stir spot welding of as-cast AZ91D and thixomolded AZ91 material is investigated. The average temperatures close to the tip of the rotating pin vary from 438 to 454 °C during the dwell period in friction stir spot welding. These measured temperature values are higher than the melting temperature of α-Mg + Mg17Al12 eutectic (437 °C). It is suggested that the temperature in the stir zone during the dwell period is determined by the relative proportions of α-Mg and (α-Mg + Mg17Al12) eutectic material, which are incorporated during friction stir spot welding. Based on the stir zone temperature measurements and a detailed examination of material located at the root of the pin thread it is suggested that material is moved downwards via the pin thread and into the stir zone during the dwell period in friction stir spot welding. Evidence of local melted film formation is observed in the stir zone of AZ91 spot welds. It is suggested that melted films are retained since their dissolution rate is much slower in the high temperature stir zone than it is when melted films is formed in the stir zone during Al 7075-T6 friction stir spot welding. The spontaneous melting temperature, solute diffusion rate and the thermodynamic driving force for droplet dissolution are much higher during Al 7075-T6 friction stir spot welding.  相似文献   

3.
Cracking in the stir zones of Mg-alloy friction stir spot welds   总被引:1,自引:0,他引:1  
Liquid penetration induced (LPI) cracking is investigated during friction stir spot weld of AZ91, AZ31 and AM60 magnesium alloys. A combination of stir zone temperature measurement and detailed metallography has revealed differences in the cracking tendencies of different magnesium alloys when the dwell time during spot welding is varied. LPI cracking in AZ91 spot welds involves the following sequence of events: the formation of eutectic films in the thermo-mechanically affected zone (TMAZ) region immediately adjacent to the stir zone extremity, engulfment of melted eutectic films as the stir zone width increases during the dwell period, penetration of α−Mg grain boundaries and crack propagation when torque is applied by the rotating tool. Cracking occurs early in the dwell period during AZ91 spot welding and almost the entire stir zone is removed when the rotating tool is withdrawn. However, crack-free AZ31 and AM60 spot welds are produced when a dwell time of 4 s is used since the stir zone temperatures are much higher than the α-Mg + Mg17Al12 eutectic temperature (437 °C) and melted eutectic films dissolve rapidly following their engulfment by the growing stir zone. In contrast, the temperature during the dwell period in AZ91 spot welding is close to 437 °C and melted eutectic films are not completely dissolved so that spot welds produced using a dwell time of 4 s exhibit LPI cracking.  相似文献   

4.
Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds.  相似文献   

5.
Friction stir butt welding of 25 mm thick AA7075–T651 plates has been investigated. Careful process parameter selection resulted in single pass, full‐penetration defect free welds. The weld nugget exhibits a significant grain refinement while facing the dissolution of strengthening precipitates. Microhardness survey gives a W‐shaped profile with lower hardness values recorded in the thermo‐mechanically‐affected zone. Tensile fractures occur, again, in the thermo‐mechanically‐affected zone, where minimum hardness occurred. The friction stir welds demonstrate an excellent root bend performance while falling behind base material in face bend test. The welds also displayed outstanding impact toughness compared to that of parent material. It is concluded that defect free single pass friction stir welds can be successfully made on 25 mm thick AA7075–T651 plates.  相似文献   

6.
The effect of important welding parameters and tool properties that are effective on static strength in friction stir spot welds of polyethylene sheets were studied. Six different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular, square and hexagonal) with different shoulder geometries, different pin length, pin angle and concavity angle were used to fabricate the joints. The tool rotational speed, tool plunge depth and dwell time were determined welding parameters. All the welding operations were done at the room temperature. Welding force and welding zone material temperature measurements were also done. Lap-shear tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments, the effect of pin profile, pin length, pin angle, dwell time and tool rotational speed on friction stir spot welding formation and weld strength was determined.  相似文献   

7.
Present work describes friction stir welding of in-house produced and hot rolled Al–4.5%Cu/TiC in situ metal matrix composites by using hardened bimetallic tool with varying shoulder surface geometries and other process variables. Joining of the said composite using friction stir welding process has been seen to provide beneficial effects such as grain refinement of the matrix and subsequent redistribution and refinement of reinforcements. A predictive model has also been developed to estimate the weld properties such as tensile strength and ductility with respect to the tool geometry used and input process variables. The X-ray diffraction analysis results of Al–4.5%Cu/TiC butt welds indicated formation of CuAl2O4 and CuAl2 to some extent in the stir zone. Fractography of the weld samples revealed dimpled ductile nature of fracture. Through multi response optimization of the welding parameters and tool geometry, weld strength of 89% that of the base material was achieved.  相似文献   

8.
Friction stir welding of AA 7075 plates in three different thicknesses such as 10, 16 and 25 mm at natural convection condition was carried out successfully without defects. Water cooled friction stir welds were also produced on 16 mm thick plates. The thermal cycles at different locations of the plate, during the friction stir welding process, were predicted using a three-dimensional thermal model. Mechanical properties of the welds were evaluated using tensile and hardness tests. Weld microstructures were also examined with optical and transmission electron microscopes. The weld hardness values and tensile properties were found to decrease with increase in plate thickness. The use of water cooling was found to improve the weld properties to some extent, although not to the level of base metal. The reasons for this behavior are discussed, correlating thermal cycles, mechanical properties, fracture locations and precipitate morphology.  相似文献   

9.
The solid-state nature of friction stir spot welding process provides outstanding advantages for the sound joining of aluminum alloys. Within this study, 3 mm-thick AA5052-H32 sheets are successfully joined by friction stir spot welding using 2344 hot-worked steel pin to investigate the effects of various tool plunge depths on the microstructure, mechanical and metallurgical properties of similar welds. Therefore, the experiments are performed at different plunge depths in the range of 3 mm–4 mm. Accordingly, the relationships between the process parameter (tool plunge depth) and the responses (microstructure, dome structure, microhardness and lap shear tensile load) are established. Microstructure analyses demonstrate that the increase in the plunge depth leads to more grain refinement within the stir zone, which significantly affects the mechanical performance of the similar joints. This study also indicates that the tool plunge depth in friction stir spot welding process has a noteworthy influence on the characteristic features of the 5052 aluminum alloy joints, such as the dome structure. Moreover, an explicit increase in the microhardness towards the weld stir zone is observed in all specimens. It is found that the average maximum tensile-shear force enhances with the increment in the tool plunge depth from 3 mm to 4 mm.  相似文献   

10.
In this study, friction stir welding of Ti‐6Al‐4 V was demonstrated in 24 mm thickness material. The microstructure and mechanical properties, fatigue, fracture toughness and crack growth of these thick section friction stir welds were evaluated and compared with electron beam welds produced in the same thickness material. It was found that the friction stir welds possessed a relatively coarse lamellar alpha transformed beta microstructure because of slow cooling from above the transus temperature of the material. The electron beam welds had a fine acicular alpha structure as a result of rapid solidification. The friction stir welds possessed better ductility, fatigue life, fracture toughness and crack growth resistance than the base meal or electron beam welds. Thus, even though friction stir welding is a relatively new process, the performance benefits it offers for the fabrication of heavy gage primary structure make it a more attractive option than the more well‐established electron beam welding method.  相似文献   

11.
Refill friction stir spot welding was applied to weld similar thin AA 7075-T6 aluminum alloy sheets in a spot-like joint configuration without a keyhole. The welds were produced using a small tool consisting of sleeve and probe with diameters of 6 mm and 4 mm, respectively. Design of experiment was employed to optimize the welding parameters in terms of the cross tensile strength by using Box Behnken Design. Based on analysis of variance, it can be concluded that plunge depth strongly affects the mechanical performance of the weld. Optimal welding parameters in terms of rotational speed, plunge depth and speed are identified to reach a cross tensile strength of up to 660 N.  相似文献   

12.
The α + β titanium alloy, Ti–6Al–4V, was friction stir welded at a constant tool rotation speed of 400 rpm. Defect-free welds were successfully obtained with welding speeds ranging from 25 to 100 mm/min. The base material was mill annealed with an initial microstructure composed of elongated primary α and transformed β. A bimodal microstructure was developed in the stir zone during friction stir welding, while microstructure in the heat affected zone was almost not changed compared with that in the base material. An increase in welding speed increased the size of primary α in the stir zone. The weld exhibited lower hardness than the base material and the lowest hardness was found in the stir zone. Results of transverse tensile test indicated that all the joints had lower strength and elongation than the base material, and all the joints were fractured in the stir zone.  相似文献   

13.
《材料科学技术学报》2019,35(6):1027-1038
Defect-free dissimilar Al/zinc coated steel and Al/AlSi coated steel welds were successfully fabricated by refill friction stir spot welding. However, Al alloy and uncoated steel could not be welded under the same welding condition. Al-Zn eutectic layer formed at the Al/zinc coated steel interface showed non-uniformity in thickness and nanoscale intermetallic (IMC) produced was discontinuous. The bonding formation between the Al-Zn layer and the surrounding materials was attributed to a liquid/solid reaction mechanism. Bonding formation at Al alloy and AlSi coated steel interface was attributed to a solid/solid reaction mechanism, as the joining process did not involve with melting of base metals or AlSi coating materials. Kissing bond formed at the weld boundary acted as a crack initiation and propagation site, and the present study showed that weld strength of Al 5754/AlSi coated steel was greatly influenced by properties of original IMC layer.  相似文献   

14.
Abstract

The microstructural change related with the hardness profile has been evaluated for friction stir welded, age hardenable 6005 Al alloy. Frictional heat and plastic flow during friction stir welding created fine and equiaxed grains in the stir zone (SZ), and elongated and recovered grains in the thermomechanically affected zone (TMAZ). The heat affected zone (HAZ), identified only by the hardness result because there is no difference in grain structure compared to the base metal, was formed beside the weld zone. A softened region was formed near the weld zone during the friction stir welding process. The softened region was characterised by the dissolution and coarsening of the strengthening precipitate during friction stir welding. Sound joints in 6005 Al alloys were successfully formed under a wide range of friction stir welding conditions. The maximum tensile strength, obtained at 507 mm min-1 welding speed and 1600 rev min-1 tool rotation speed, was 220 MPa, which was 85% of the strength of the base metal.  相似文献   

15.
The aim of this study is to examine the effect of main friction stir welding (FSW) parameters on the quality of acrylonitrile butadiene styrene (ABS) plate welds. Welds were carried out in a FSW machine, using a tool with a stationary shoulder and no external heating system. The welding parameters studied were the tool rotational speed which varied between 1000 and 1500 (rpm); the traverse speed which varied between 50 and 200 (mm/min), and the axial force ranging from 0.75 to 4 (kN). The major novelty is to study the influence of the parameter axial force on FSW of polymers. Produced welds have always a tensile strength below the base material, reaching the maximum efficiencies of above 60 (%) for welds made with higher rotational speed and axial force. Good quality welds are achieved without using external heating, when the tool rotational speed and axial force are above a certain threshold. Above that threshold the formation of cavities and porosity in the retreating side of the stir zone is avoided and the weld region is very uniform and smooth. For low rotational speed and axial force welds have poor material mixing at the retreating side and voids at the nugget. For this reason the strain at break of these welded plates is low when compared with that of base material.  相似文献   

16.
Microstructural evolution and mechanical properties of friction stir welded AA7075‐T6 aluminum alloy were examined. Grain structure and precipitate evolution in the stir zone and heat‐affected zone were evaluated using optical microscope and differential scanning calorimetry. A significant grain refinement and dissolution of η′ precipitates in the stir zone were found, but chromium‐bearing dispersoids remained nearly unchanged. The main particles in the stir zone and heat‐affected zone were η precipitates as well as Guinier‐Preston zones formed during post‐weld natural aging. The small recrystallized grains were observed in the thermo‐mechanically affected zone next to the stir zone. A W‐shaped hardness distribution where soft region was produced in the heat‐affected zone at a short distance from the stir zone were obtained. Hardness profiles of the welds were explained by precipitate distributions. Friction stir welding resulted in the reversion and coarsening of η′ precipitates. The formation of Guinier‐Preston zones in the stir zone and some parts of the heat‐affected zone during post‐weld natural aging increased the hardness. In transverse tensile specimens, fracture occurred in a location with the minimum hardness at either advancing or retreating side randomly. Further, influences of welding parameters on mechanical properties were investigated.  相似文献   

17.
In the present paper, the material flow and intermixing during friction stir spot welding of dissimilar Al2024/Al materials were investigated. The dissimilar materials had quite different strength. The microstructural evolutions taking place during a series of lap and butt welds were observed. The effect of penetration depths, dwell time, rotational speed and tool geometry were systematically investigated. The material flow and formation of the intermixed region were explained by a modified model.  相似文献   

18.
The effects of rotational and welding speeds on the microstructure and mechanical properties of bobbin-tool friction stir welded (BT-FSW) Mg AZ31 were investigated. The results indicated that the thermo-mechanically affected zone (TMAZ) consisted of equiaxed grains, which were inconsistent with the deformed, rotated and elongated grains found in the TMAZs of bobbin-tool friction stir welded Al alloys and friction stir welded Al and Mg alloys. The average grain size increased as the ratio of the rotational speed to welding speed increased. Excellent welds with no degradation in hardness were produced using a low heat input. Mechanical tests revealed that the ultimate tensile strengths gradually increased with increasing welding speed while keeping the rotational speed constant. The rotational and welding speeds had only slight influences on the yield stress and fracture elongation.  相似文献   

19.
A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.  相似文献   

20.
搅动摩擦焊的特点和应用   总被引:4,自引:0,他引:4  
张峥 《材料工程》1999,(2):35-36
搅动摩擦焊是在摩擦焊基础上派生出来的,它不受焊件必须是旋转对称体的限制,适于焊铝合金等熔点较低材料,焊缝为固态组织,避免了普通熔焊可能产生的各种缺陷,是解决Al-Li合金,金属基复合材料焊接问题的好方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号