首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel Ti/TiO2 and Ti/Pt–TiO2 mesh photoelectrodes were produced by anodizing titanium mesh in H2SO4 solution. Their structural and surface morphology were examined by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The analytical results indicated that the crystal structure, morphology and pore size were affected significantly by the voltage and current density applied in anodization and the percentage platinum content. The results of XPS measurement showed that the binding energy of O 1s and Ti 2p increased slightly owing to platinum deposition (Pt0, Pt2+ and Pt4+) onto the TiO2 surface. The photoelectrocatalytic (PEC) oxidation of methyl orange in aqueous solution using the Ti/TiO2 and Ti/Pt–TiO2 meshes was investigated. The experimental results demonstrated that Ti/TiO2 mesh prepared at 160 V and 110 mA cm–2 achieved the best PEC oxidation. The efficiency of PEC oxidation could be further enhanced by applying an electrical bias between the working electrode and counter electrode. An optimal electrical bias voltage was found to be 0.6 V, while an optimal platinum content was 3.37%.  相似文献   

2.
A thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode was developed and successfully applied to degrade Rhodamine B (RhB) and textile effluent. Using a 5–150 mg L−1 RhB solution as the model system, thin-film PEC removed total color and TOC by 99–28% and 78–15%, respectively, in 1 h, which is much higher than 82–7% and 60% to zero by conventional PEC. The enhanced treatment efficiency achieved by thin-film PEC process was attributed to the significantly reduced path length of irradiation light source. The wastewater was kept circulating during the experiments to timely refresh the aqueous film on the TiO2/Ti anode and promote the mass transfer of the target pollutants and the degradation products in the bulk solution. The thin-film PEC reactor can degrade both simulated and real dye wastewater efficiently under UV light irradiation. Results suggested that thin-film PEC was particularly superior for treating a high concentration solution. The thin-film PEC reactor was also applied to treat RhB solution efficiently under solar light irradiation. The recycle experiments demonstrated excellent stability and reliability of the slant-placed TiO2/Ti anode. This study proposed a simple and effective method to design PEC reactor applicable for industrial dye wastewater treatment.  相似文献   

3.
The effects of three synthesis variables on the electrochemical properties of TiO2 prepared by the Pechini method are described. To minimize the number of experiments, a factorial design was used. It was shown that, in the presence of nitrobenzene, the temperature and the number of layers were the most important variables. The effects of these variables on the cathodic charges measured by cyclic voltammetry were –0.75 and 2.76 mC cm–2, respectively. Explanations of these findings are based on the effect of the conditions of preparation on the morphology and microstructure of the electrodes.  相似文献   

4.
In this paper, we present the synthesis of self-organized TiO2 nanotube arrays formed by anodization of thin Ti film deposited on Si wafers by direct current (D.C.) sputtering. Organic electrolyte was used to demonstrate the growth of stable nanotubes at room temperature with voltages varying from 10 to 60 V (D.C.). The tubes were about 1.4 times longer than the thickness of the sputtered Ti film, showing little undesired dissolution of the metal in the electrolyte during anodization. By varying the thickness of the deposited Ti film, the length of the nanotubes could be controlled precisely irrespective of longer anodization time and/or anodization voltage. Scanning electron microscopy, atomic force microscopy, diffuse-reflectance UV–vis spectroscopy, and X-ray diffraction were used to characterize the thin film nanotubes. The tubes exhibited good adhesion to the wafer and did not peel off after annealing in air at 350 °C to form anatase TiO2. With TiO2 nanotubes on planar/stable Si substrates, one can envision their integration with the current micro-fabrication technique large-scale fabrication of TiO2 nanotube-based devices.  相似文献   

5.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

6.
A series of Au–TiO2/ITO films with nanocrystaline structure was prepared by a procedure of photo-deposition and subsequent dip-coating. The Au–TiO2/ITO films were characterized by X-ray diffraction, scanning electronic microscopy, electron diffraction, X-ray photoelectron spectroscopy, and UV–VIS diffuse reflectance spectroscopy to examine the surface structure, chemical composition, the chemical state of metal, and the light absorption properties. The photocatalytic activity of the Au–TiO2/ITO films was evaluated in the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of bisphenol A (BPA) in aqueous solution. Compared with a TiO2/ITO film, the degree of BPA degradation using the Au–TiO2/ITO films was significantly higher in both the PC and PEC processes. The enhancement is attributed to the action of Au deposits on the TiO2 surface, which play a key role by attracting conduction band photoelectrons. In the PEC process, the anodic bias externally applied on the illuminated Au–TiO2/ITO film can further drive away the accumulated photoelectrons from the metal deposits and promote a process of interfacial charge transfer.  相似文献   

7.
The degradation of formic acid (HCOOH), FA (a surrogate contaminant) using titanium dioxide (TiO2) and 1% Pt doped TiO2 electrodes, prepared by sol—gel methods, was investigated in a photoelectrocatalytic (PEC) system in order to determine the effect of Pt doping on the oxidation potential of TiO2. Pt doping shifts the position of band edge and therefore the direct and indirect oxidation potentials of TiO2 in PEC systems. As a result, the degradation of formic acid via the generation of hydrogen peroxide production on 1%Pt—TiO2 electrodes was much better than that on non-doped electrodes. The degradation of HCOOH was also examined with respect to the faradaic efficiency of this process. It was found that the 1%Pt—TiO2 photoanode had a 30% higher efficiency than that of non-doped TiO2 photoanodes.  相似文献   

8.
TiO2/WOx nanotubes have unique photo-energy retention properties that have gathered scientific interest. Herein, we report the synthesis, morphological characterization, and the electrochemical characterization of TiO2/WOx nanotubes compared with pure TiO2 nanotubes, prepared by anodization technique. Significant structural differences were not observed in TiO2/WOx nanotubes as observed by using scanning electron microscopy and transmission electron microscopy. The charge transfer resistance of TiO2/WOx before and after photo irradiation determined by using electrochemical impedance spectroscopy proves the inherent energy retention property which was not observed in pure TiO2 nanotubes.  相似文献   

9.
We used a modified sol-gel method to prepare titanium dioxide and multi-walled carbon nanotube (CNT) composites that we subsequently deposited onto indium tin oxide (ITO) conductive glass plates. We characterized these CNT-doped TiO2 (CNT-TiO2) films using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and diffuse reflectance UV-vis spectroscopy. The photoelectrocatalytic (PEC) activity of the composites was evaluated through their ability to mediate the degradation of phenol. XRD measurements indicated that the TiO2 component existed solely in the anatase phase and that the crystallinity of the CNTs was low. XPS indicated that carbon atoms could substitute for both oxygen and titanium atoms in the TiO2 lattice to form Ti-C and Ti-O-C structures, which were responsible for the extra photoabsorption and PEC activity under illumination with visible light, in addition to those provided by the CNTs and carbonaceous and Ti3+ species. An interphase interaction between TiO2 and the CNTs elevated the photoabsorbance of the composites in the visible light region. A sample of TiO2 doped with 10% CNTs and calcined at 400 °C exhibited the highest photocurrent and PEC efficiency. We systematically investigated the effects of several parameters of the PEC process, including the applied potential and pH, on the phenol conversion.  相似文献   

10.
ABSTRACT: The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption.  相似文献   

11.
Methodology for the electrochemical decomposition of bisphenol A is described. The electrochemical behaviour of bisphenol A at a Pt electrode was investigated by means of cyclic voltammetric techniques. The electrochemical oxidation of bisphenol A led to the deactivation of the electrode as a result of the deposition of an electropolymerized film. However the electrochemical decomposition of bisphenol A could be achieved by the use of a platinum coated titanium (Pt/Ti) electrode and a tin dioxide coated (SnO2/Ti) electrode. The electrolysis was carried out galvanostatically at a constant current of 0.3 A. The mineralization of bisphenol A was monitored by determining the amount of total organic carbon. Furthermore, the generation and nature of intermediates produced in the electrochemical reactions was investigated. Although large amounts of aliphatic acids were generated by electrolysis with the Pt/Ti anode, they were produced only to a small extent in at the SnO2/Ti anode. In the case of the SnO2/Ti anode, bisphenol A is rapidly oxidized to carbon dioxide and water, compared to the Pt/Ti anode.  相似文献   

12.
A visible light active binary SnO2-TiO2 composite was successfully prepared by a sol-gel method and deposited on Ti sheet as a photoanode to degrade orange II dye. Titanium and SnO2 can promote the development of rutile phase of TiO2 and inhibit the formation of anatase phase of TiO2. Formation of SnO2 crystalline is insignificant even when the calcination temperature increases to 700 °C. Heterogenized interface between SnO2 and TiO2 inhibits growth of TiO2 linkage and leads to the particle-filled surface morphology of SnO2-containing films. The carbonaceous, Ti-O-C bonds and Ti3+ species are likely to account for the photoabsorption and photoelectrocatalytic (PEC) activity under visible light illumination. The electrode with 30% SnO2 exhibits higher photocurrent when compared with those in the region of 0-50%. The 600 °C-calcined SnO2-TiO2 electrode indicates higher activity when compared with those at 400, 500, 700 and 800 °C. PEC degradation of orange II follows the Langmuir-Hinshelwood model and takes place much effectively in a solution of pH 3.0 than those in pH 7.0 and pH 11.0.  相似文献   

13.
《分离科学与技术》2012,47(7):1525-1543
Abstract

In this study, TiCl4 coagulant together with coagulant aids such as FeCl3, Al2(SO4)3, and Ca(OH)2 were investigated to improve the photoactivity of titanium dioxide (TiO2) produced from sludge and to increase the resulting low pH value. After TiCl4 flocculation with three coagulant aids, the settled floc (sludge) was incinerated at 600°C to produce TiO2 doped with Fe, Al, and Ca elements. Fe-, Al-, and Ca-doped TiO2 was characterized in terms of structural, chemical, and photo-electronic properties. All the coagulant aids used together with Ti-salt flocculation effectively increased the pH values. The surface area of TiO2-WO (without any coagulant aids), Fe/TiO2, Al/TiO2, and Ca/TiO2 was 122 m2/g, 77 m2/g, 136 m2/g and 116 m2/g, respectively. The TiO2-WO, Fe/TiO2, Al/TiO2, and Ca/TiO2 was found to be of anatase phase. The XRD pattern on the Fe/TiO2 included an additional peak of hematite (α-Fe2O3). The majority of gaseous acetaldehyde with TiO2-WO and Ca/TiO2 for photocatalytic activity was completely removed within 40 minutes under UV irradiation.  相似文献   

14.
Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film.  相似文献   

15.
The beneficial influence of incorporation of acid-treated and rutile TiO2 (r-TiO2)-modified multi-wall carbon nanotubes (MWNTs) in TiO2 films on photocurrent–voltage characteristics of dye-sensitized solar cells (DSSCs) was studied. Two different routes were adopted for the modification of acid-treated MWNTs (a-MWNTs) with r-TiO2. The films and MWNTs were characterized by electron microscopy, energy dispersive X-ray spectroscopy, XRD and Raman spectroscopy. In the case of incorporation of a-MWNTs with r-TiO2 modification, short-circuit photocurrent (J sc) of the pertinent DSSC increased by 35% compared with that of a cell with bare TiO2 film. The open-circuit voltage remained almost the same for all cases. The enhanced J sc is explained by the increased surface area of the film, enhanced cluster formation of TiO2 particles around a-MWNTs, and improved interconnectivity of TiO2 particles in the presence of a-MWNTs.  相似文献   

16.
Amorphous TiO2, prepared at room temperature through a sol–gel method implementing hydrolysis of TiCl4, has been supported on graphite rods and then annealed at 673 K. In this way graphite was completely covered by a porous anatase TiO2 layer, with an external thickness of about 1 μm, with graphite pores completely filled by the semiconductor particles. The obtained electrode was structurally characterized by SEM microscopy coupled to EDAX mapping and by Raman spectroscopy. A Pyrex annular reactor was designed in order to test the prepared electrodes for the photoelectrocatalytic degradation of 4-nitrophenol, a target pollutant dissolved in aqueous conductive solution. The continuous reactor worked in total recirculation mode and the degradation runs were carried out by applying near UV-light, bias or both energy sources. The influence of flow rate, initial 4-nitrophenol concentration and applied potential on the degradation rate was studied.  相似文献   

17.
Highly-ordered TiO2 nanotube arrays (TiNTA) were prepared by an electrochemical anodization method and used as the carrier material to load 1 wt.% Ru. The Ru/TiNTA catalyst was then applied to the combination reactions of the partial oxidation of methane reaction (POM) with the carbon dioxide reforming with methane reaction (CRM) for syngas production. In comparison with the commercial TiO2 powder (P25) supported 1 wt.% Ru catalyst, Ru/TiNTA shows higher activity and much better stability. The superior performance of Ru/TiNTA is attributed to the specific monolithic-like structure and confinement effect of TiNTA.  相似文献   

18.
Calciothermic reduction of titanium dioxide is suggested as an alternative to the conventional Kroll process for production of metallic titanium. In this study, a simple reactor was used to carry out the reaction of TiO2 with 20 wt % excess Ca at 1000°C to obtain titanium product with a mean size of Ti particles around 20 μm. A sharp decrease in reaction temperature can be achieved by using KClO4 as an additive. In this case, sub-micron agglomerated titanium particles were obtained.   相似文献   

19.
A novel degradation system, combined with photon-efficient thin-film photocatalysis, conventional bulk-phase photocatalysis and photocarrier-efficient electrocatalysis (TBPE), was developed on a vertically ordered one-dimensional (1D) TiO2 nanotube (TNT)/Ti electrode for the purification of organics. The TBPE system possessed excellent optical, electrochemical, photoelectrochemical and photoelectrocatalytic properties as well as a high mass-transfer coefficient and interfacial activity. The combined degradation of methyl orange (MO) was optimized by varying the rotation angular velocity, applied bias and substrate concentration, and a photoelectrochemical synergetic effect of 62.2% was observed under the optimized conditions for TBPE compared to the individual electrocatalytic (EC) and photocatalytic (PC) systems. To explore the mechanisms, the combined thin-film degradation system of photon-efficient thin-film photocatalysis with photocarrier-efficient electrocatalysis (TPE), and the combined bulk-phase degradation system of conventional bulk-phase photocatalysis with photocarrier-efficient electrocatalysis (BPE), were comparatively estimated. A dramatic increase of 29.4-74.4% was observed in the MO removal efficiency via the thin-film TPE system compared to the bulk-phase BPE system. The results indicated that in the proposed TBPE system on the 1D TNT electrode, the predominant degradation occurred via the TPE system due to its excellent UV utilization efficiency and resultant interfacial photoactivity.  相似文献   

20.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号