首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
改进粒子群-BP神经网络模型的短期电力负荷预测   总被引:10,自引:2,他引:8  
师彪  李郁侠  于新花  闫旺 《计算机应用》2009,29(4):1036-1039
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群算法(MPSO),并与BP算法相结合,形成改进的粒子群—BP(MPSO-BP)神经网络算法,用此算法训练神经网络,实现了神经网络参数优化,得到了基于MPSO-BP算法的神经网络模型。综合考虑气象、天气、日期类型等影响负荷的因素,进行电网短期负荷预测。算例分析表明,与传统BP神经网络法和PSO-BP神经网络方法相比,该方法改善了BP神经网络的泛化能力,预测精度高,收敛速度快,对电力系统短期负荷具有良好的预测能力。  相似文献   

2.
天然气负荷预测天然气负荷准确预测是天然气管网的优化的基础。短期天然气负荷变化呈现伪周期性和随机性。为了提高天然气负荷的预测精度,提出一种基于Elman神经网络天然气负荷预测模型,并采集某企业的天然气负荷数据进行仿真,并BP神经网络预测模型进行了对比分析,仿真结果验证所建立预测模型是可行且有效的,具有一定的应用价值。  相似文献   

3.
通过对电力负荷变化规律和影响因素的分析,集结多种单个模型所包含的信息,进行最佳组合,提出了在单一模型预测结果基础之上的基于神经网络的优化组合预测,确定了网络训练样本和隐含层的个数,可使提前一天的预测精度较传统预测模型有较大提高。并当发现某一点预测误差过大,可对该点利用文中提出的误差灰色模型修正预测结果,这样不仅可提高整体预测精度,更重要的是减小最大预测误差值和减少大预测误差发生的次数。仿真结果验证了该预测模型的可行性和有效性。  相似文献   

4.
短期电力负荷预测模型的建立与应用   总被引:1,自引:0,他引:1  
研究短期电力负荷问题.电力负荷影响因子多,且含有噪音信息,传统短期电力负荷预测方法难以对其进行准确的预测,导致电力负荷精度低.为了提高短期电力负荷预测精度,提出了KPCA - BPNN的短期电力负荷预测模型.模型对电力负荷影响因素进行分析,并利用KPCA提取其主元特征分量,然后利用BPNN进行建模预测,最后对湖南某城市的短期电力负荷进行预测.仿真表明,KPCA - BPNN不仅加快了电力短期负荷预测预测速度,同时提高了电力短期负荷预测精度,是一种新型实用的电力系统短期负荷预测模型.  相似文献   

5.
为了解决传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。  相似文献   

6.
基于IPSO-LSTM神经网络的短期负荷预测   总被引:1,自引:0,他引:1  
在电网负荷预测方面,LSTM模型有较好的预测精度.但模型参数需要手动设置,网络训练时间长.提出一种改进粒子群算法(IPSO)与长短期记忆网络(LSTM)相结合的预测模型(IPSO-LSTM).利用IPSO对LSTM网络的神经元数,学习率等参数进行优化,自动寻找合适参数,提高预测精度和收敛速度.以某地电力公司的历史负荷数...  相似文献   

7.
8.
9.
在激烈竞争的电力市场中,短期负荷预测(Short-term Load Forecasting,STLF)是电力系统高效运行的主要研究热点.针对具有高度波动性非线性信号的电力负载,提出了一种基于神经网络和混沌智能特征选择的预测方法,通过选择最佳候选输入集作为特征参数,将其作为预测输入数据.预测引擎采用一种多层感知层,具有...  相似文献   

10.
基于SGOA神经网络的短期负荷预测   总被引:1,自引:1,他引:1       下载免费PDF全文
短期负荷预测的结果对电力系统的经济效益具有重要影响。针对多极值问题,首次提出了一种体现大融合思想的共享式全局寻优算法,将几种全局寻优算法有机组合,使它们共享优化信息,协同寻优,从而形成最丰富的寻优机制,达到最强的全局寻优能力。并且为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将SGOA算法和BP算法相结合的短期负荷预测方法,用SGOA算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法。在构建网络模型时,同时也考虑到了气候、温度等因素的影响,对它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。  相似文献   

11.
基于优化小波BP神经网络的燃气短期负荷预测   总被引:3,自引:0,他引:3  
在燃气短期负荷预测问题的研究中,燃气负荷由于受天气、人为活动等因素的影响,呈现出一种非线性特性,单个神经网络的局限性限制了其预测精度.为了有效的预测天然气短期负荷,提出了一种混沌遗传算法优化的小波BP神经网络预测模型.小波网络结合小波变换良好的时频局部特性和神经网络的自学习能力,加强了网络的函数逼近能力.利用混沌遗传算法的全局优化搜素能力对网络连接权值、阈值和伸缩平移尺度的优化求解,加快了网络的收敛的速度,建立最优的燃气负荷预测模型.将组合模型应用于上海燃气短期负荷预测,结果表明改进检测模型具有更好的非线性拟合能力和更高的预测精度.  相似文献   

12.
基于小波神经网络的电网负荷预测   总被引:1,自引:0,他引:1  
为提高负荷预测的精度及反映天气因素对负荷的影响.选用小波理论中的Malht算法进行多尺度分析.应用新疆塔北电网近年的负荷数据和气象资料进行了预测,预测结果表明其具有较好的性能.  相似文献   

13.
天然气负荷预测对于燃气经营企业尤其重要,对保证天然气管网的用气量、优化管网的调度具有重要意义.传统的天然气预测模型预测精度低、模型泛化程度低.为了克服模型缺陷,提出了一种基于遗传算法优化小波神经网络的天然气负荷预测模型.通过遗传算法对小波神经网络的阈值以及网络连接权值等参数进行优化,从而建立预测效果最好的模型,通过企业提供的历史门站数据对预测模型进行验证.仿真结果表明,使用遗传算法优化网络参数的小波神经网络提高了模型的预测精度,具有一定的工程应用价值.  相似文献   

14.
短期负荷预测在电网调度安排和电力市场交易中发挥着重要作用,预测精度高,有利于提高发电设备的利用率和经济调度的有效性。为充分挖掘负荷数据中时序性特征的联系,解决神经网络中由超参数的随机选取导致的预测精度下降问题,提出一种基于教与学的遗传算法(TLBGA)和门控循环单元(GRU)神经网络的短期负荷预测方法。利用灰色关联分析法对原始数据进行相关度分析,剔除冗余特征,使输入与输出保持较好的映射关系,在遗传算法中加入一种基于教与学优化的新型变异算子,用于防止其出现早熟收敛问题,从而提高解的质量。在此基础上,运用改进后的TLBGA算法对GRU神经网络模型进行超参数寻优,更新GRU的模型超参数并使其性能达到最佳状态,以提高负荷预测的精度。对欧洲某地区的电力负荷数据集和美国PJM电力市场公开负荷数据集进行预测,结果表明,该方法的预测精度分别达到了97.1%和97.2%,相比反向传播神经网络、循环神经网络及GRU神经网络模型,具有更高的预测精度。  相似文献   

15.
It is important to select input variables when the neural network forecasting model is proposed. In this pa-per, by using the autocorrelation function on input variables sets selection for neural network forecasting model, a systemic and scienti[ic method for input variables sets selection is put forward. FFT is adopted to accomplish the speediness calculation, which enhances the maneuverability of this approach. A forecasting example is given, whos eresult indicates that the method is effective.  相似文献   

16.
基于BP神经网络的预测建模系统的研究与实现   总被引:4,自引:1,他引:4  
神经网络具有良好的记忆、归纳和学习能力,对难以用数学方法建立精确模型的信息、工艺等能够进行有效地预测建模。该文通过对BP神经网络的分析和研究,针对传统BP算法的不足,采用Levenberg—Marquardt(LM)优化算法的建立一个基于BP神经网络预测建模系统。在介绍了系统的主要功能之后,给出了用MATLAB软件实现该系统主要模块的具体程序。最后采用该系统对一个制造过程中刀具磨损量的进行了预测建模,实验仿真结果表明:系统具有良好的预测效果,刀具实际磨损量与预测磨损量的误差基本上在10%以下。  相似文献   

17.
提高电力负荷预测精度有利于电力部门的安全生产,有利于合理安排电网运行方式和机组的检修计划,有利于系统的合理规划和经济运行。为了提高短期负荷预测的精度,把自相关函数的概念应用到反向传播(Back Propogation,BP)神经网络输入变量选择中,通过MATLAB仿真软件建立负荷预测模型。最后对某电力系统1d的负荷进行预测,仿真结果验证了该模型的可行性和有效性。  相似文献   

18.
针对燃气负荷数据非线性、非平稳性的特点,本文提出一种基于改进的LMD算法与GRU神经网络的组合预测模型.模型首先利用改进后的LMD算法对燃气负荷数据进行序列分解,改进的LMD方法采用分段牛顿插值法代替传统的滑动平均值法来获得局部均值函数和包络估计函数,改善了传统LMD方法存在的过平滑问题.之后,再将得到的若干PF分量进行小波阈值去噪处理,获得有效的分量数据.最后,利用GRU神经网络分别预测各分量值,将它们相加得到最终的负荷预测值.仿真实验表明,提出的方法与单个GRU神经网络以及结合传统LMD算法的GRU网络相比,预测精度更高.  相似文献   

19.
张涛  王杰  宋北光 《微计算机信息》2007,23(16):301-302
电力系统负荷变化易受多方面因素的影响,负荷曲线呈现出强烈的非线性。而BP神经网络具有较强的非线性映射特性,它只需输入输出样本数据而不需要做复杂的相关假定即可完成系统的建模。通过实验证明将该方法用于电力系统负荷的预报是有效可行的。  相似文献   

20.
随着电力物联网的不断发展,用户级电力负荷预测在电力需求侧管理中呈现出日益重要的作用.为了提高用户级电力负荷预测的性能,本文提出一种基于K-means聚类与卷积神经网络特征提取的短期电力负荷预测模型.首先,利用K-means将用户聚为两类:对于日相关性强的用户,将相邻时刻和日周期的历史负荷作为输入,采用CNN模型提取特征进行预测;对于日相关性弱的用户,仅将相邻时刻的历史负荷输入到CNN模型进行预测.为了验证所提出算法的性能,我们在实际的用户负荷数据上做了实验,并与随机森林、支持向量回归机进行对比,结果表明本文所构建模型的预测平均绝对百分误差降低了20%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号