首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
A simple continuous process was designed for the transesterification of Jatropha curcas (J. curcas) oil to alkyl esters using microwave-assisted method. The product with purity above 96.5% of alkyl ester is called the biodiesel fuel. Using response surface methodology, a series of experiments with three reaction factors at three levels were carried out to investigate the transesterification reaction in a microwave and conversion of alkyl ester from J. curcas oil with NaOH as the catalyst. The results showed that the ratio of methanol to oil, amount of catalyst and flow rate have significant effects on the transesterification and conversion of alkyl ester. Based on the response surface methodology using the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and flow rate of transesterification process were 10.74, 1.26 wt% and 1.62 mL/min, respectively. The largest predicted and experimental conversions of alkyl esters (biodiesel) under the optimal conditions are 99.63% and 99.36%, respectively. Our findings confirmed the successful development of a two-step process for the transesterification reaction of Jatropha oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.  相似文献   

2.
Thermal stability of biodiesel in supercritical methanol   总被引:1,自引:0,他引:1  
Hiroaki Imahara 《Fuel》2008,87(1):1-6
Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270 °C/17 MPa and 380 °C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270 °C/17 MPa, but at 350 °C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270 °C/17 MPa and 350 °C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300 °C, preferably 270 °C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production.  相似文献   

3.
Esters from vegetable oils have attracted a great deal of interest as substitutes for petrodiesel to reduce dependence on imported petroleum and provide a fuel with more benign environmental properties. In this work biodiesel was prepared from cottonseed oil by transesterification with methanol, using sodium hydroxide, potassium hydroxide, sodium methoxide and potassium methoxide as catalysts. A series of experiments were conducted in order to evaluate the effects of reaction variables such as methanol/oil molar ratio (3:1–15:1), catalyst concentration (0.25–1.50%), temperature (25–65 °C), and stirring intensity (180–600 rpm) to achieve the maximum yield and quality. The optimized variables of 6:1 methanol/oil molar ratio (mol/mol), 0.75% sodium methoxide concentration (wt.%), 65 °C reaction temperature, 600 rpm agitation speed and 90 min reaction time offered the maximum methyl ester yield (96.9%). The obtained fatty acid methyl esters (FAME) were analyzed by gas chromatography (GC) and 1H NMR spectroscopy. The fuel properties of cottonseed oil methyl esters (COME), cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, ash content, sulfur content, acid value, copper strip corrosion value, density, higher heating value, methanol content, free and bound glycerol were determined and are discussed in the light of biodiesel standards such as ASTM D6751 and EN 14214.  相似文献   

4.
Non-Edible Plant Oils as New Sources for Biodiesel Production   总被引:1,自引:0,他引:1  
Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil.  相似文献   

5.
Camellia japonica and Vernicia fordii seed oils were employed as a feedstock for production of biodiesel by transesterification with methanol on alkali catalysts. The composition and physicochemical properties were investigated in the raw seed oils and the biodiesel products. The fatty acid methyl ester (FAME) contents in the biodiesel produced from the seed oils were above 96% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Other qualities such as cetane number, acid value, density, and kinematic viscosity, of the produced biodiesels also matched the biodiesel qualities.  相似文献   

6.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

7.
Qing Li  Longyu Zheng  E. Garza  Shengde Zhou 《Fuel》2011,90(4):1545-1548
Biodiesel is a renewable and environmentally friendly liquid fuel. However, the feedstock, predominantly crop oil, is a limited and expensive food resource which prevents large scale application of biodiesel. Development of non-food feedstocks are therefore, needed to fully utilize biodiesel’s potential. In this study, the larvae of a high fat containing insect, black soldier fly (Hermetiaillucens) (BSFL), was evaluated for biodiesel production. Specifically, the BSFL was grown on organic wastes for 10 days and used for crude fat extraction by petroleum ether. The extracted crude fat was then converted into biodiesel by acid-catalyzed (1% H2SO4) esterification and alkaline-catalyzed (0.8% NaOH) transesterification, resulting in 35.5 g, 57.8 g and 91.4 g of biodiesel being produced from 1000 BSFL growing on 1 kg of cattle manure, pig manure and chicken manure, respectively. The major ester components of the resulting biodiesel were lauric acid methyl ester (35.5%), oleinic acid methyl ester (23.6%) and palmitic acid methyl ester (14.8%). Fuel properties of the BSFL fat-based biodiesel, such as density (885 kg/m3), viscosity (5.8 mm2/s), ester content (97.2%), flash point (123 °C), and cetane number (53) were comparable to those of rapeseed-oil-based biodiesel. These results demonstrated that the organic waste-grown BSFL could be a feasible non-food feedstock for biodiesel production.  相似文献   

8.
Biodiesel is currently considered as the most promising substitute for diesel fuel because of its similar properties to diesel. This study presents the use of the supercritical methanol method in the production of biodiesel from Croton megalocarpus oil. The reaction parameters such as methanol‐to‐oil ratio, reaction temperature and reaction time were varied to obtain the optimal reaction conditions by design of experiment, specifically, response surface methodology based on three‐variable central composite design with α = 2. It has been shown that it is possible to achieve methyl ester yields as high as 74.91 % with reaction conditions such as 50:1 methanol‐to‐oil molar ratio, 330 °C reaction temperature and a reaction period of 20 min. However, Croton‐based biodiesel did not sustain higher temperatures due to decomposition of polyunsaturated methyl linoleate, which is dominant in biodiesel. Lower yields were observed when higher temperatures were used during the optimization process. The supercritical methanol method showed competitive biodiesel yields when compared with catalytic methods.  相似文献   

9.
《Fuel》2007,86(7-8):1139-1143
In this study, biodiesel fuel and fuel additives were produced from crude tall oil that is a by-product in the pulp manufacturing by craft or sulphate pulping process. Fatty acids and resinic acids were obtained from crude tall oil by distillation method. Tall oil methyl ester (biodiesel) was produced from fatty acids. Resinic acids were reacted with NiO and MnO2 stoichiometrically for production of metallic fuel additives. Each metallic fuel additive was added at the rate of 8 μmol/l and 12 μmol/l to make mixtures of 60% tall oil methyl ester/40% diesel fuel (TE60) for preparing test fuels. Metallic fuel additives improved properties of biodiesel fuels, such as pour point and viscosity values. Biodiesel fuels were tested in an unmodified direct injection diesel engine at full load condition. Specific fuel consumption of biodiesel fuels increased by 6.00%, however, in comparison with TE60, it showed trend of decreasing with adding of additives. Exhaust emission profile of biodiesel fuels improved. CO emissions and smoke opacity decreased up to 64.28% and 30.91% respectively. Low NOx emission was also observed in general for the biodiesel fuels.  相似文献   

10.
Biodiesel produced by the transesterification reaction of soybean oil using potassium hydroxide (KOH) catalytic is a promising alternative fuel to diesel regarding the limited resources of fossil fuel and the environmental concerns. In order to decrease the operational temperature and increase the conversion efficiency of methanol, a novel idea was presented in which a co-solvent dichloromethane was added to the reactants. The results showed that the yield of methyl ester was improved when dichloromethane was coexistence. The effects of the co-solvent, molar ratio of methanol/oil, reaction temperature, and catalyst on the biodiesel conversion were investigated. With the optimal reaction temperature of 45 °C, methanol to oil ratio of 4.5:1, co-solvent dichloromethane of 4.0%, a 96% yield of methyl esters was observed in 2.0 h at the condition with 1.0 wt.% potassium hydroxide. The characterization and analysis of biodiesel were obtained by FT-IR, gas chromatograph and inductively coupled plasma atomic emission (ICP–OES) spectroscopy methods. The cetane number, flash point, cold filter plugging point, acid number, water content, ash content and total glycerol content were investigated.  相似文献   

11.
Jatropha curcas L. has recently been hailed as the promising feedstock for biodiesel production as it does not compete with food sources. Conventional production of biodiesel from J. curcas L. seeds involve two main processing steps; extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME). In this study, the feasibility of in situ extraction, esterification and transesterification of J. curcas L. seeds to biodiesel was investigated. It was found that the size of the seed and reaction period effect the yield of FAME and amount of oil extracted significantly. Using seed with size less than 0.355 mm and n-hexane as co-solvent with the following reaction conditions; reaction temperature of 60 °C, reaction period of 24 h, methanol to seed ratio of 7.5 ml/g and 15 wt% of H2SO4, the oil extraction efficiency and FAME yield can reached 91.2% and 99.8%, respectively. This single step of reactive extraction process therefore can be a potential route for biodiesel production that reduces processing steps and cost.  相似文献   

12.
Butyl biodiesel was synthesised from canola oil and subsequently epoxidised via the in situ peroxyacetic acid method converting 45% of the unsaturated portion. Alkoxy butyl biodiesel was synthesised under acid conditions with a range of both straight-chain and branched alcohols. Alkoxylation of butyl biodiesel with methanol, ethanol and n-propanol did not improve the cloud or pour point over that for conventional methyl biodiesel. Alkoxylation with alcohols larger than butanol including n-pentanol, n-hexanol and n-octanol produced cloud points that were 5 °C lower than that for methyl biodiesel. The lowest cloud point achieved was for 2-ethylhexoxy butyl biodiesel at −6 °C, representing a 6 °C reduction in cloud point over methyl biodiesel. Alkoxylation did not have a significant effect on the pour point of biodiesel. Alkoxylation of butyl biodiesel resulted in significant increases in viscosity. The kinematic viscosity generally increased with increasing alkoxy chain length and ranged from 6.67 mm2 s−1 for methoxy butyl biodiesel to 9.76 mm2 s−1 for ethylhexoxy butyl biodiesel, more than double the value for methyl biodiesel. The improved low-temperature properties of the longer-chain alkoxy biodiesel were most likely due to the protruding alkoxy chain, which also resulted in an increase in viscosity. The use of alcohols larger than pentanol does not provide significant benefit in terms of low-temperature properties, and results in an undesirable increase in viscosity.  相似文献   

13.
生物柴油低温流动改进剂复配研究   总被引:3,自引:0,他引:3  
韩伟  杨湄  刘昌盛  黄凤洪  黄庆德 《应用化工》2007,36(10):964-967
采用碱催化法制备菜籽油生物柴油和棕榈油生物柴油,对其主要品质指标进行分析;考察了添加不同的柴油低温流动改进剂及其复配物对生物柴油低温流动性能的影响。结果表明,柴油低温流动改进剂能够改善生物柴油低温流动性能;将其进行复配后,能表现出协同效应,取得更好的降滤效果,尤其能使饱和脂肪酸甲酯含量高的棕榈油生物柴油冷滤点降低8℃;不同生物柴油对柴油低温流动改进剂或其复配物感受性存在较大差异,不饱和脂肪酸甲酯含量高,且脂肪酸甲酯种类较多、分布较广的菜籽油生物柴油对单一低温流动改进剂感受性好,而饱和脂肪酸甲酯含量高,且脂肪酸甲酯种类分布较集中的棕榈油生物柴油对复配物感受性好。  相似文献   

14.
A property of biodiesel that currently limits its use to blends of 20% or less is its relatively poor low-temperature properties. Alkoxylation of the unsaturated portion of biodiesel offers the potential benefit of reduced cloud point without compromising ignition quality or oxidation stability. Conventional biodiesel was synthesised from canola oil and the alcohols methanol, ethanol and butanol, epoxidised in situ, and alkoxylated by acid-catalysed oxirane ring opening in the presence of the alcohol of the ester group. Optimal conditions for epoxidation were H2O2/biodiesel molar ratio of 2:1, acetic acid/biodiesel molar ratio of 0.2:1, 2 wt% H2SO4, 6 h reaction at 60 °C. Alkoxylation resulted in alkoxy substitution rates of 37.1% (methyl), 34.3% (ethyl) and 32.9% (butyl). Selectivity for alkoxy biodiesel was 89.0%, 82.7% and 81.7% for methoxy, ethoxy and butoxy biodiesel, respectively. The cloud point for methyl and ethyl biodiesel increased slightly, while a reduction of 1 K was achieved for butyl biodiesel. The presence of by-products negated much of the expected improvement in cloud point for butoxy butyl biodiesel. Further optimisation work is required to improve both conversion and selectivity if significant improvements in cloud point are to be achieved.  相似文献   

15.
Biodiesel has been recommended as an environmentally benign alternative fuel because it emits a comparatively small amount of air pollutants. Biodiesel can be processed from canola oil, which has a low liquefaction temperature owing to its high unsaturated fatty acid content, which also limits its engine-clogging effects. In this study, optimum conditions such as the amount of methanol, the alkali catalyst, and the reaction temperature were determined for production of biodiesel from canola oil. A maximum biodiesel yield was shown at an oil/methanol mole ratio of 1:6. The optimum amount of catalyst was 1 wt% of potassium hydroxide. The biodiesel yield and the methyl ester content were high when the reaction temperature was 55 °C. The consolute temperature for determining the maximum biodiesel yield was proposed in consideration of the boiling point of methanol. The energy density was analyzed for the final products of biodiesel in comparison to the raw canola oil and other plant oil based biodiesels.  相似文献   

16.
Cherng-Yuan Lin  Chiao-Lei Fan 《Fuel》2011,90(6):2240-2244
The fuel properties of the biodiesel produced from Camellia oleifera Abel oil through supercritical-methanol transesterification with no catalyst was investigated in this study. An emulsion of raw C. oleifera Abel oil dispersed in methanol was prepared prior to being poured into a supercritical-methanol reaction system to undergo the transesterification reaction. The fuel properties of the resulting biodiesel were analyzed and compared with those of a commercial biodiesel and with ASTM No. 2D diesel fuel. The experimental results show oleic acid (C18:1) and palmitic acid (16:0) to be the two major components of the C. oleifera Abel oil biodiesel. It also contains significantly higher mono-unsaturated fatty acids and long carbon-chain fatty acids ranging from C20 to C22 than those found in the commercial biodiesel. However, relative to the commercial biodiesel, the C. oleifera Abel oil biodiesel has significantly fewer poly-unsaturated fatty acids with more than three double bonds, which implies that it also has a much higher degree of oxidative stability. In addition, the biodiesel produced from C. oleifera Abel oil was also found to have more favorable fuel properties than the commercial biodiesel produced from waste cooking oil, including a higher heat of combustion and flash point and lower levels of kinematic viscosity, water content, and carbon residue. Moreover, the former appears to have much lower peroxide and acid values, and thus a much higher degree of oxidative stability than the latter.  相似文献   

17.
An environmentally benign process for the production of methyl ester using γ-alumina supported heterogeneous base catalyst in sub- and supercritical methanol has been developed. The production of methyl ester in refluxed methanol conventionally utilized double promoted γ-alumina heterogeneous base catalyst (CaO/KI/γ-alumina); however, this process requires a large amount of catalyst and a long reaction time to produce a high yield of methyl ester. This study carries out methyl ester production in sub- and supercritical methanol with the introduction of an optimized catalyst used in the previous work for the purpose of improving the process and enhancing efficiency. CaO/KI/γ-Al2O3 catalyst was prepared by precipitation and impregnation methods. The effects of catalyst amount, reaction temperature, reaction time, and the ratio of oil to methanol on the yield of biodiesel ester were studied. The reaction was carried out in a batch reactor (8.8 ml capacity, stainless steel, AKICO, Japan). Results show that the use of CaO/KI/γ-Al2O3 catalyst effectively reduces both reaction time and required catalyst amount. The optimum process conditions were at a temperature of 290 °C, ratio of oil to methanol of 1:24, and a catalyst amount of 3% over 60 min of reaction time. The highest yield of biodiesel obtained under these optimum conditions was almost 95%.  相似文献   

18.
A transesterification reaction of Jatropha curcas oil with methanol in the presence of KOH impregnated CaO catalyst was performed in a simple continuous process. The process variables such as methanol/oil molar ratio (X1), amount of catalyst (X2) and total reaction time (X3) were optimized through response surface methodology, using the Box–Behnken model. Within the range of the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and total reaction time were found to be 8.42, 3.17% and 67.9 min, respectively. The results showed that the amount of catalyst and total reaction time have significant effects on the transesterification reaction. For the product to be accepted as a biodiesel fuel, its purity must be above 96.5% of alkyl esters. Based on the optimum condition, the predicted biodiesel conversion was 97.6% while the actual experimental value was 97.1%. The above mentioned results demonstrated that the response surface methodology (RSM) based on Box–Behnken model can well predict the optimum condition for the biodiesel production.  相似文献   

19.
BACKGROUND: Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Biocatalysis of soybean oils using soluble lipase offers an alternative approach to lipase‐catalyzed biodiesel production using immobilized enzyme or whole‐cell catalysis. The central composite design (CCD) of response surface methodology (RSM) was used here to evaluate the effects of enzyme concentration, temperature, molar ratio of methanol to oil and stirring rate on the yield of fatty methyl ester. RESULTS: Lipase NS81006 from a genetically modified Aspergillus oryzae was utilized as the catalyst for the transesterification of soybean oil for biodiesel production. The experimental data showed that enzyme concentration, molar ratio of methanol to oil and stirring rate had the most significant impact on the yield of fatty methyl ester; a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. The predicted biodiesel yield was 0.928 (w/w) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 0.936 ± 0.014 (w/w) confirmed the validity of the predicted model. CONCLUSION: RSM and CCD were suitable techniques to optimize the transesterification of soybean oil for biodiesel production by soluble lipase NS81006. The related lipase NS81006 reuse stability, chemical or genetic modification, and transesterification mechanism should be taken into consideration. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Renewable energy sources are attracting more attention due to lower cost and lower pollution relative to fossil fuels. The aim of this experimental work is the production of renewable and clean methyl ester from pomace oil as an alternative fuel. This oil was obtained from pomace which is the waste of olive oil plants. Optimum producing conditions were determined experimentally. The maximum yield was obtained at 30% of methanol/oil ratio, 60 °C temperature for 60 min with NaOH catalyst. The properties of the biodiesel thus obtained were compared with diesel fuel requirements. An organic based Manganese additive improved the biodiesel properties. Doping the fuel at a ratio of 12 μmol/l oil methyl ester led to a 20.37% decrease in viscosity, 7 °C fall in the flash point and reduced the pour point from 0 °C to −15 °C. This blend of pomace oil methyl ester-diesel fuel with manganese additive was tested in a direct injection diesel engine. The maximum effect of the new fuel blend and diesel fuel on engine performance was obtained at 1400 rpm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号