首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alar Jänes  Thomas Thomberg  Enn Lust 《Carbon》2007,45(14):2717-2722
Nanoporous carbide-derived carbon (CDC) was synthesised from vanadium carbide (VC) powder via gas phase chlorination in the temperature range from 500 to 1100 °C. The XRD analysis of nanoporous carbon powder samples was carried out to investigate the structural changes (graphitisation) of nanoporous carbons synthesised. The first-order Raman spectra showed the absorption peak at ∼1582 cm−1 and the disorder-induced (D) peak at ∼1345 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1305 m2 g−1 and total pore volume up to 0.66 cm3 g−1 were obtained.  相似文献   

2.
A series of CuO-doped activated carbons (CDACs) were prepared by chemical deposition. The electrochemical behavior of CDACs was investigated in electrochemical capacitors based on ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIm]SCN) as electrolyte. The results indicated that a diffusion-controlling, reversible redox reaction of CuO particles happened in ionic liquid and porous carbon. When the amount of CuO-doped activated carbon with a specific surface area of 2460 m2 g−1 reached 2%, the single electrode average specific capacitance can reach the maximal value of 210 F g−1, about 20% higher than the one used pure activated carbon as electrode material.  相似文献   

3.
Carbon xerogels synthesized with a fixed resorcinol/sodium carbonate molar ratio (R/C) were physically activated using CO2. The effect of activation temperature and activation time on the final properties of the activated carbon xerogels was evaluated. The specific surface area increases from ∼600 m2 g−1 to 2000 m2 g−1 and more by increasing the temperature and duration of the activation step. A comparison between physical activation with CO2 and chemical activation with hydroxides was also performed: it was found that both processes produce an increase of the micropore volume and specific surface area without altering the mesoporosity developed during the synthesis. However, chemical activation can lead to the development of the narrow microporosity mainly whereas, in physical activation, the widening of the narrow micropores takes place whatever the process conditions.  相似文献   

4.
Alar Jänes  Heisi Kurig  Enn Lust 《Carbon》2007,45(6):1226-1233
Commercial nanoporous carbon RP-20 was activated with water vapor in the temperature range from 950 °C to 1150 °C. The XRD analysis was carried out on nanoporous carbon powder samples to investigate the structural changes (graphitisation) in modified carbon that occurred at activation temperatures T ? 1150 °C. The first-order Raman spectra showed the absorption peak at 1582 cm−1 and the disorder (D) peak at 1350 cm−1. The low-temperature N2 adsorption experiments were performed at −196 °C and a specific surface area up to 2240 m2g−1 for carbon activated at T = 1050 °C was measured. The cell capacitance for two electrode activated nanoporous carbon system advanced up to 60 F g−1 giving the specific capacitance ∼240 F g−1 to one electrode nanoporous carbon ∣1.2 M (C2H5)3CH3NBF4 + acetonitrile solution interface. A very wide region of ideal polarisability for two electrode system (∼3.2 V) was achieved. The low frequency limiting specific capacitance very weakly increases with the rise of specific area explained by the mass transfer limitations in the nanoporous carbon electrodes. The electrochemical characteristics obtained show that some of these materials under discussion can be used for compilation of high energy density and power density non-aqueous electrolyte supercapacitors with higher power densities than aqueous supercapacitors.  相似文献   

5.
The adsorption of activated carbon fibers (ACFs) and their surface characteristics were investigated before and after electrochemical polarization. The adsorption kinetics of m-cresol showed the dependence on polarized potential, and the adsorption rate constant increased by 77.1%, from 6.38 × 10−3 min−1 at open-circuit (OC) to 1.13 × 10−2 min−1 at polarization of 600 mV. The adsorption isotherms at different potentials were in good agreement with Langmuir isotherm model, and the maximum adsorption capacity increased from 2.28 mmol g−1 at OC to 3.67 mmol g−1 at polarized potential of 600 mV. These indicated that electrochemical polarization could effectively improve the adsorption rate and capacity of ACFs. The surface characteristics of ACFs before and after electrochemical polarization were evaluated by N2 adsorption-desorption isotherms, scanning electron microscope (SEM), zeta potential and Fourier transform infrared spectroscopy (FTIR). The results showed that the BET specific surface area and pore size increased as the potential rose. However, the surface chemical properties of ACFs hardly changed under electrochemical polarization of less than 600 mV. This study was beneficial to understand the mechanism of electrochemically enhanced adsorption.  相似文献   

6.
Different fibrous activated carbons were prepared from natural precursors (jute and coconut fibers) by physical and chemical activation. Physical activation consisted of the thermal treatment of raw fibers at 950 °C in an inert atmosphere followed by an activation step with CO2 at the same temperature. In chemical activation, the raw fibers were impregnated in a solution of phosphoric acid and heated at 900 °C in an inert atmosphere. The characteristics of the fibrous activated carbons were determined in the following terms: elemental analysis, pore characteristics, SEM observation of the porous surface, and surface chemistry. As the objective of this study was the reuse of waste for industrial wastewater treatment, the adsorption properties of the activated carbons were tested towards pollutants representative of industrial effluents: phenol, the dye Acid Red 27 and Cu2+ ions. Chemical activation by phosphoric acid seems the most suitable process to produce fibrous activated carbon from cellulose fiber. This method leads to an interesting porosity (SBET up to 1500 m2 g−1), which enables a high adsorption capacity for micropollutants like phenol (reaching 181 mg g−1). Moreover, it produces numerous acidic surface groups, which are involved in the adsorption mechanisms of dyes and metal ions.  相似文献   

7.
In order to optimize the performance of supercapacitors, the capacitance of the carbon materials used as electrodes was strictly related to their pores size and also to their redox properties. Well-sized carbons have been elaborated through a template technique using mesoporous silica. For a series of template carbons, a perfect linear dependence has been found for the capacitance values versus the micropore volume determined by CO2 adsorption. The redox properties of carbons were enhanced by substituting nitrogen for carbon up to ca. 7 wt.%. For carbons with similar nanotextural characteristics, the electrochemical measurements showed a proportional increase of the specific capacitance with the nitrogen content in acidic electrolyte. For an activated carbon from polyacrylonitrile with a specific surface area of only 800 m2 g−1, but with a nitrogen content of 7 wt.%, the capacitance reaches 160 F g−1, with very little fading during cycling.  相似文献   

8.
Nano-structural graphite prepared by ball milling under H2 or Ar atmosphere was studied as an electrode for electric double layer capacitors (EDLCs) by means of a conventional 2-electrode galvanostatic method. Especially, the product prepared under H2 atmosphere using zirconia balls revealed 500 m2 g−1 surface area and showed 12 F g−1 specific capacitance, which was comparable to that of an activated carbon with large specific surface area of 3000 m2 g−1 examined as a reference. A proper condition of the milling time is rather a shorter time than ∼8 h, where the graphitic feature is remained in the ball milled product. On the other hand, for the sample prepared by using steel balls, the specific capacitance per surface area was several hundreds times smaller than the others, indicating that the small amount of Fe contamination during milling played a negative role for the EDLC properties.  相似文献   

9.
M. Richou  R. Denoyel  P. Roubin 《Carbon》2009,47(1):109-3508
Nitrogen and carbon dioxide adsorption experiments have been used to investigate the porosity of carbon deposits formed in the Tore Supra tokamak as a consequence of the erosion of the plasma-facing components. We compare BET, αs-, and Dubinin-Raduskevich methods to distinguish between micropore volume (∼0.04 cm3 g−1) and external surface (∼90 m2 g−1). Consistent results have been obtained for nitrogen and carbon dioxide, and the smallest pores are shown to be reversibly closed and opened under air exposure and outgassing at 600 °C, respectively, probably due to blocking of pore entrances by surface oxides. Pore size distribution is calculated using the non-local density functional theory: a novel and straightforward method is used to fit the experimental isotherms by Lorentzian distributions of pores centered in some relevant pore size regions. We thus show that the tokamak sample micropores are mainly ultra-micropores (∼75%) whose widths are centered at 0.6 nm. This latter result is in good qualitative agreement with the outgassing effect and in good quantitative agreement with what is deduced from αs-plot.  相似文献   

10.
Bernd R. Müller 《Carbon》2010,48(12):3607-3615
The adsorption behavior of albumin-bonded bilirubin on different micrometer-sized granular activated carbons (GACs) with different BET surface areas of 913, 1173 and 1413 m2 g−1 and different pore size distributions in the micropore and mesopore range has been investigated in order to study the behavior of bilirubin from batch experiments. The extent of adsorption was measured from the residual concentrations of bilirubin in the solution after different adsorption times using visible absorption spectroscopy. It has been demonstrated that the adsorption rate of bilirubin increases with decreasing particle size and with increasing mesopore volume which was obtained from benzene isotherms. A diffusion coefficient of about D = 0.60 × 10−10 cm2 s−1 for bilirubin adsorption on activated carbon particles with a benzene mesopore volume of 0.18 cm3 g−1 in the pore range of 2.35-44.0 nm was calculated from the Fick’s law of diffusion by using an intraparticle mass transfer model of sorptive uptake from a stirred solution of limited volume in spherical particles.  相似文献   

11.
Nano-thin polypyrrole (PPy) layers with thickness from ∼5 nm to several 10s nm were deposited on vapor grown carbon fibers (VGCF) by an in situ chemical polymerization. Using different concentrations of the pyrrole could control the thicknesses of deposited PPy layers. Surface morphology and thickness of the deposited PPy layers were confirmed by means of scanning electron microscopy and scanning transmission emission microscopy. Pseudo-capacitive behavior of the deposited PPy layers on VGCF investigated by means of cyclic voltammetry. Then, the PPy/VGCF composites were mixed with activated carbons (AC) at various mixing ratios. For the PPy/VGCF/AC composite electrodes, characteristics of specific capacitance and power capability were examined by half-cell tests. As results of this study, it was investigated that nano-thin PPy layer below ∼10 nm deposited on VGCF had high pseudo-capacitance and fast reversibility. Its specific capacitance per averaged weight of active material (PPy) was obtained as ∼588 F g−1 at 30 mV s−1 and maintained as ∼550 F g−1 at 200 mV s−1 of scan rate. Also, from the mixing 60 wt.% of the PPy/VGCF with 25 wt.% of AC, the PPy/VGCF/AC composite electrode exhibited higher power capability maintaining the specific capacitance per active materials of PPy and AC as ∼300 F g−1 at 200 mV s−1 in 6 M KOH.  相似文献   

12.
Guang-Ping Hao 《Carbon》2010,48(12):3330-1131
Tubular structured ordered mesoporous carbon CMK-5 was investigated for the adsorption of the industrial dyes reactive blue 19, acid red 57 and fuchsin basic in aqueous solutions at room temperature. It was found that CMK-5 exhibits an ultrahigh adsorption rate and superior adsorption capacities for these dyes. Its maximum adsorption capacities for reactive blue 19, acid red 57 and fuchsin basic were 733, 1131 and 1403 mg g−1, respectively, and significantly greater than other literature reported results on porous carbons. Following adsorption of reactive blue 19, CMK-5 carbon could be regenerated by either ethanol extraction or thermal annealing at 600 °C, reaching ∼51% and ∼77%, respectively of the adsorption capacity of the original carbon. For comparison, ordered mesoporous carbon CMK-3 (rod structure), polymer based disordered mesoporous carbon, and steam and CO2 activated commercial coconut carbons were investigated for the adsorption of reactive blue 19. The fast adsorption rate of CMK-5 carbon is due to its unique properties of tubular mesostructure, bimodal mesopore system and high surface area. In the case of requiring emergency removal of large amount of dyes in aqueous solution, CMK-5 would be an ideal choice.  相似文献   

13.
Marcus Rose 《Carbon》2010,48(2):403-407
Highly porous carbide-derived carbon fibers have been synthesized by electrospinning of polycarbosilane with subsequent pyrolysis and chlorination. The resulting ultrathin fibers show specific surface areas up to 3116 m2 g−1 and very high storage capacities for hydrogen up to 3.86 wt.% at 17 bar and 77 K. Due to the outstanding adsorption performance and other properties such as high temperature stability and the unique CDC fiber shape, this new kind of fiber material offers promising possibilities for several applications like air or liquid filters or textiles for protective clothing. Application as a flexible electrode material for supercapacitors is conceivable.  相似文献   

14.
Porous carbon beads were prepared from macroporous anion-exchange resin beads preliminary converted into resin-zeolite Beta composite or pure zeolite Beta spheres. Two synthesis procedures were used depending on the initial template employed. In a series of experiments, the resin from the resin-zeolite Beta composite was directly carbonized into carbon. In another series of experiments, the resin was removed by oxidation at 600 °C leaving behind self-bonded zeolite Beta beads, which were filled with carbon by chemical vapor deposition (CVD) of propylene. As a final step for both procedures, the zeolite was dissolved in hydrofluoric acid. All the carbons prepared inherited the macroscopic spherical shape of the template spheres as well as the morphology of the primary particles building up the beads. The synthesis procedure and the carbonization temperature or the temperature for CVD of carbon employed influenced the ordering and the pore structure of the produced carbons. The carbons prepared by direct carbonization showed relatively low surface areas, less than 1000 m2 g−1, and no zeolite structural regularity. The samples obtained via CVD maintained the zeolite ordering with a periodicity of 11.7 Å and had surface areas of over 2000 m2 g−1.  相似文献   

15.
A simple and easy sol-gel approach has been developed to directly synthesize in situ three-dimensionally interconnected uniform ordered bimodal porous silica (BPS) incorporating both the macroporosity and mesoporosity in the lattice without extra synthesis process performed in previous work. Multimodal porous carbon (MPC) was fabricated through the inverse replication of the BPS. The unique structural characteristics such as well-developed 3-D interconnected ordered macropore framework with open mesopores embedded in the macropore walls, large surface area (1120 m2 g−1) and mesopore volume (1.95 cm3 g−1) make MPC very attractive as an anode catalyst support in polymer exchange membrane fuel cell. The MPC-supported Pt-Ru alloy catalyst has demonstrated much higher power density toward hydrogen oxidation than the commercial carbon black Vulcan XC-72-supported ones.  相似文献   

16.
Micro- and mesoporous carbide-derived carbon (CDC) was synthesised from molybdenum carbide (Mo2C) powder by gas phase chlorination in the temperature range from 400 to 1200 °C. Analysis of XRD results show that C(Mo2C), chlorinated at 1200 °C, consist mainly on graphitic crystallites of mean size, La = 9 nm and Lc = 7.5 nm. The first-order Raman spectra showed the graphite-like absorption peak at ∼1587 cm−1 and the disorder-induced (D) peak at ∼1348 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1855 m2 g−1 and total pore volume up to 1.399 cm3 g−1 were obtained. Sorption measurements showed the presence of both micro- and mesopores after chlorination at 400-900 °C and only mesopores after chlorination at 1000°-1200 °C. Stepwise formation of micro- and mesopores was achieved and the peak pore size can be shifted from 0.8 nm up to 4 nm by increasing the chlorination temperature.  相似文献   

17.
Catalytic filamentous carbon (CFC) synthesized by the decomposition of methane over iron subgroup metal catalysts (Ni, Co, Fe or their alloys) is a new family of mesoporous carbon materials possessing the unique structural and textural properties. Microstructural properties of CFC (arrangement of the graphite planes in filaments) are shown to depend on the nature of catalyst for methane decomposition. These properties widely vary for different catalysts: the angle between graphite planes and the filament axis can be 0° (Fe-Co-Al2O3), 15° (Co-Al2O3), 45° (Ni-Al2O3), 90° (Ni-Cu-Al2O3). The textural properties of CFC depend both on the catalyst nature and the conditions of methane decomposition (T, °C). The micropore volume in CFC is very low, 0.001-0.022 cm3 g−1 at the total pore volume of 0.26-0.59 cm3 g−1. Nevertheless, the BET surface area may reach 318 m2 g−1. Results of the TEM (HRTEM), XRD, Raman spectroscopic, SEM and adsorption studies of the structural and textural properties of CFC are discussed.  相似文献   

18.
E.A. Dawson  P.A. Barnes 《Carbon》2006,44(7):1189-1197
Ceramic foam substrates of various porosities were coated with novolak resin, which was then subsequently carbonised and activated to develop a pore structure. The carbon forming the layer was characterised by thermal analysis, TPD and N2, CO2 and hexane vapour adsorption. It was found to be microporous with a high surface area (up to 1400 m2 g−1), which made it a good adsorbent for hexane vapour at ambient temperature. The carbon-ceramic interface was examined using SEM. The coated foams displayed a reduced pressure drop compared to carbon granules and had good dynamic hexane vapour adsorption characteristics. Depending on the foam architecture, hexane breakthrough was delayed for up to 78 min.  相似文献   

19.
Porous carbons with high-volumetric capacitance in aqueous electric double layer capacitors (EDLCs) were simply prepared by poly(vinylidene chloride) (PVDC) carbonization at high temperature without activation or any other additional processes. The PVDC-derived carbon is microporous with Brunauer-Emmett-Teller (BET) surface area about 1200 m2 g−1. As it possesses not only high-gravimetric capacitance (262 F g−1) but also high-electrode density (0.815 g cm−3), the PVDC-derived carbon present an outstanding high-volumetric capacitance of 214 F cm−3, twice over of the commercial carbon Maxsorb-3 with a high-surface area of 3200 m2 g−1. The PVDC-derived carbon also exhibit good rate performance, indicating that it is a promising electrode material for EDLCs.  相似文献   

20.
Juan Hu  Hongliang Guo 《Carbon》2010,48(12):3599-152
Several kinds of porous carbons were easily prepared by using metal-organic framework as both template and carbon precursor. Nanocasting is chosen to adjust the textures and structures with phenolic resin or carbon tetrachloride and ethylenediamine as the additional carbon sources. The carbon materials were further activated by potassium hydroxide (KOH). The electrochemical capacitance behaviors of these carbon materials were investigated in both aqueous and organic electrolytes. Energy densities of 9.4 W h kg−1 in 6 M KOH and 31.2 W h kg−1 in 1.5 M tetraethylammonium tetrafluoroborate acetonitrile solution can be obtained for one of the prepared porous carbon materials (MAC-A) with the surface area of 2222 m2 g−1 and the total pore volume of 1.14 cm3 g−1. Due to its high packing density of 0.93 g cm−3, the related volumetric specific energy densities of 8.8 and 29.0 W h L−1 can be got.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号