首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fe2O3/Al2O3 catalyst was studied to selectively synthesize mixed alcohols from syngas in a continuously stirred slurry reactor with the oxygenated solvent Polyethylene Glycol-400 (PEG-400). The selectivity of mixed alcohols in the products reached as high as 95 wt.% and the C2+ alcohols (mainly ethanol) was more than 40 wt.% in the total alcohol products at the reaction conditions of 250 °C, 3.0 MPa, H2/CO = 2 and space velocity = 360 ml/gcat h. The hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) measurements of the catalyst confirmed that the FeO phase was responsible for the high selectivity to mixed alcohols in the process. And the oxygenated solvent PEG-400 was also necessary for the selective synthesis of mixed alcohols in the reaction system.  相似文献   

2.
In this work, 3% Ru-Al2O3 and 2% Rh-CeO2 catalysts were synthesized and tested for CH4-CO2 reforming activity using either CO2-rich or CO2-lean model biogas feed. Low carbon deposition was observed on both catalysts, which negligibly influenced catalytic activity. Catalyst deactivation during temperature programmed reaction was observed only with Ru-Al2O3, which was caused by metallic cluster sintering. Both catalysts exhibited good stability during the 70 h exposure to undiluted equimolar CH4/CO2 gas stream at 750 °C. By varying residence time in the reactor during CH4-CO2 reforming, very similar quantities of H2 were consumed for water formation. Reverse water-gas shift (RWGS) reaction occurred to a very similar extent either with low or high WHSV values over both catalysts, revealing that product gas mixture contained near RWGS equilibrium composition, confirming the dominance of WGS reaction and showing that shortening the contact time would actually decrease the H2/CO ratio in the syngas produced by CH4-CO2 reforming, as long as RWGS is quasi equilibrated. H2/CO molar ratio in the produced syngas can be increased either by operating at higher temperatures, or by using a feed stream with CH4/CO2 ratio well above 1.  相似文献   

3.
Bi2O3 compositions were prepared to investigate the effect of rare earth metal oxides as co-dopants on phase stability of bismuth oxide. Compositions containing 9-14 mol% of Y2O3 and Er2O3 were synthesized by solid state reaction. The structural characterization was carried out using X-ray powder diffraction. The XRD results show that the samples containing 12 and 14 mol% total dopants had cubic structure, whereas the samples with lower dopant concentrations were tetragonal. Comparing the lattice parameters of the cubic phases of (Bi2O3)0.88(Y2O3)0.06(Er2O3)0.06 and (Bi2O3)0.86(Y2O3)0.07(Er2O3)0.07 revealed that lattice parameter decreases by increasing the dopant concentration. The XRD pattern and the powder density results indicated the formation of solid solution in the studied systems. After annealing samples with cubic phase at 600 °C for various periods of time, phase transformation to tetragonal and rhombohedral occurs.  相似文献   

4.
Atomic scale computer simulation was used to predict the mechanisms and energies associated with the accommodation of aliovalent and isovalent dopants in three host oxides with the corundum structure. Here we consider a much more extensive range of dopant ions than has previously been the case. This enables a rigorous comparison of calculated mechanism energetics. From this we predict that divalent ions are charge compensated by oxygen vacancies and tetravalent ions by cation vacancies over the full range of dopant radii. When defect associations are included in the model these conclusions remain valid. At equilibrium, defects resulting from extrinsic dopant solution dominate intrinsic processes, except for the largest dopant cations. Solution reaction energies increase markedly with increasing dopant radius. The behaviour of cluster binding energies is more complex.  相似文献   

5.
The phase diagram of the Al2O3-HfO2-Y2O3 system was first constructed in the temperature range 1200-2800 °C. The phase transformations in the system are completed in eutectic reactions. No ternary compounds or regions of appreciable solid solution were found in the components or binaries in this system. Four new ternary and three new quasibinary eutectics were found. The minimum melting temperature is 1755 °C and it corresponds to the ternary eutectic Al2O3 + HfO2 + Y3Al5O12. The solidus surface projection, the schematic of the alloy crystallization path and the vertical sections present the complete phase diagram of the Al2O3-HfO2-Y2O3 system.  相似文献   

6.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

7.
8.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

9.
In this work we present the study of the interaction between NIR pulsed laser and Al2O3-ZrO2 (3%Y2O3) eutectic composite. The effect produced by modifying the reference position as well as the working conditions and laser beam features has been studied when the samples are processed by means of pulse bursts.The samples were obtained by the laser floating zone technique using a CO2 laser system. The laser machining was carried out with a Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-widths in the nanosecond range.Geometric dimensions, i.e. ablated depth, machined width and removed volume as well as ablation yield of the resulting holes have been studied. We have described and discussed the morphology, composition and microstructure of the processed samples.  相似文献   

10.
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software.  相似文献   

11.
Bin Wen 《Fuel》2002,81(14):1841-1846
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature.  相似文献   

12.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   

13.
The synthesis of dimethyl ether (DME) from biomass-derived model synthesis gas has been investigated on Cu-ZnO-Al2O3/Zr-ferrierite bifunctional catalysts. The catalysts are prepared by co-precipitation–impregnation method using Na2CO3, K2CO3 and (NH4)2CO3 as the precipitants. The catalytic activity tests reveal that the best yield of DME can be obtained on the catalyst precipitated by using (NH4)2CO3. Detailed characterization studies conducted on the catalysts to measure their properties such as surface area, acidity by temperature-programmed desorption of ammonia (NH3-TPD), reducibility of Cu oxide by temperature-programmed reduction (TPR), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and copper surface area and particle size measurements by N2O titration method. Increasing the number of moderate acidic sites and facilitation of easily reducible copper species with small particle size are found to be the prime reasons for the superior functionality of the (NH4)2CO3 precipitated catalyst. The usage of (NH4)2CO3 also leaves no residual ions, whereas the presence of residual K+ and Na+ ions in the case of K2CO3 and Na2CO3 precipitated catalysts leads to lower activity and selectivity.  相似文献   

14.
Ceramic laser stereolithography is a manufacturing process suitable candidate for the production of complex shape technical ceramics. The green ceramic is produced layer by layer through laser polymerisation of UV curable ceramic suspensions. A number of critical issues deserve attention: high solid loading and low viscosity of the suspensions, high UV reactivity, prevention of interlayer delamination in the green and in the sintered body, good mechanical performance. In this work, ZrO2-reinforced Al2O3 components have been obtained from an acrylic modified zircon loaded with alumina powders. The zircon compound is effective as organic photoactivated resin and allows the dispersion of a high volume fraction of Al2O3 powder (up to 50 vol.%) while keeping viscosity at reasonable low values. The zircon compound also represents a liquid ceramic precursor that converts to oxide after burning out of the binder. Thank to the good dispersion of the alumina powder in the zircon acrylate, a uniform dispersion of ZrO2 submicron particles is obtained after pyrolysis. These are located at the grain boundaries between alumina grains. Formation of both monoclinic and tetragonal ZrO2 occurs as evidenced by XRD. No delamination occurs in bending tests as evidenced by SEM fractography, satisfactory modulus and strength values were concurrently found.  相似文献   

15.
In this work results on dynamic corrosion studies of fused cast Al2O3-SiO2-ZrO2 and isostatically pressed and sintered Cr2O3-based refractories by two crystalline (transparent) frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C.Microstructural and mineralogical analyses of selected areas from the corroded regions of the studied refractories were performed by reflected light optical microscopy and scanning electron microscopy with analysis by X-ray dispersive energy.Significant differences between the corrosion mechanisms acting in the two types of materials were found. In the fused cast Al2O3-SiO2-ZrO2 specimens corrosion took place by the dissolution of alumina and zirconia in the frit and in the glass formed by the reaction between the frit and the refractory. In the Cr2O3-based materials the corrosion process was controlled by the capillar penetration of the molten frit through the open pores. The reaction between the ZnO from the frits and Cr2O3 led to the formation of spinel (ZnCr2O4), a high-melting point bonding phase that retarded the frit penetration. Results are discussed using the relevant phase equilibrium diagrams.  相似文献   

16.
Interactions between a poly(vinyl)silazane and Al2O3 or Y2O3-stabilised ZrO2 fillers were studied during the fabrication of polysilazane-derived bulk ceramics in order to investigate the influence of oxide fillers on resulting properties. Specimens were produced by coating of the filler powders with the polysilazane, warm-pressing of the resulting composite powders, and pyrolytic conversion in flowing N2 at various temperatures between 1000 °C and 1400 °C. Significant differences in densification were observed, depending on the filler used. Reactions between the polysilazane-derived matrix and Al2O3 or ZrO2 at temperatures ≥1300 °C resulted in the formation of Si5AlON7 or ZrSiO4, respectively. Reactivity in the polysilazane-derived component was a result of SiO2 contamination caused primarily by adsorbed species on the filler particle surface. Knowledge of polysilazane/filler interface processes is found to be decisive for the prediction of properties such as shrinkage and porosity, which heavily influence performance of a material.  相似文献   

17.
Manufacturing of enamels and frits has undergone dramatic changes since the 1980s. This has required significant efforts in research and development. Typical compositions of frits for ceramic tiles are silica-based with fluxing agents; some of the components are highly corrosive. Improvements in the production of frits would imply the selection of the most adequate refractories as a function of the chemical composition of the considered frit and the fabrication procedure.The refractories currently used in frit furnaces are Al2O3-ZrO2-SiO2 (AZS) fused cast materials and Cr2O3-based materials. In this work, results on dynamic corrosion studies of AZS and Cr2O3-based materials by two ZnO-containing frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C. Macroscopic results are analysed in terms of the remaining volume after the tests, as usually done in the glass industry. The significance and limits of such an approach are discussed.  相似文献   

18.
设计建造了磁稳定床加氢实验装置,以磁性氧化铝为载体,通过浸渍法制备了蛋壳型钌基磁性Ru/γ-Fe2O3-γ-Al2O3微球催化剂,详细考察了磁性催化剂的制备参数、磁稳定床的操作参数对苯选择性加氢的影响。结果表明磁稳定床的链式操作状态提高了环己烯的选择性,证实了所研制的蛋壳型钌基磁性微球催化剂适用于磁稳定床中苯的选择性加氢工艺,具有较好的应用前景。  相似文献   

19.
Four kinds of ZSM-5 zeolites with different SiO2/Al2O3 ratios are alkali-treated in 0.2 M NaOH solution for 300 min at 363 K. Changes to the compositions, morphologies, pore sizes, and distributions of the zeolites are compared before and after alkali-treatment. The changes observed are largely influenced by the SiO2/Al2O3 ratios with which the zeolites are synthesized. A possible mechanism of desilication during alkali-treatment is proposed. The SiO2/Al2O3 ratio of zeolites is found to influence the yield of light olefins that use heavy oil as feedstock. Alkali-treated ZSM-5 zeolites produce higher yields of light olefins compared to either untreated zeolites or the industry catalyst CEP-1. It is believed that alkali-treatment introduces mesopores to the zeolites and improves their catalytic cracking ability. ZSM-5 zeolites with SiO2/Al2O3 ratios of 50 also present superior selectivity toward light olefins because of their optimized hierarchical pores.  相似文献   

20.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号