首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用低温等离子体协同Fenton氧化法处理聚丙烯酰胺(PAM)废水,研究了废水p H值、放电时间、放电电压、H_2O_2/Fe~(2+)比对PAM废水COD降解率的影响。结果表明,影响PAM废水COD降解率因素主次为:废水p H值放电时间放电电压H_2O_2/Fe~(2+),当PAM废水p H值4,放电时间60 min,放电电压8 k V,H_2O_2与Fe~(2+)比值为9∶1时,废水净化效果最好,PAM废水COD降解率为76.32%。  相似文献   

2.
采用Fe~(2+)活化Na_2S_2O_8技术处理实际焦油蒸馏废水。首先通过正交试验考察了Na_2S_2O_8初始浓度、Fe~(2+)初始浓度、pH以及温度等条件对稀释后焦油蒸馏废水COD去除率的影响规律,然后通过单因素实验确定了其最佳反应条件。实验结果表明,当p H为7.00,Na_2S_2O_8初始浓度为20mmol/L,Fe~(2+)初始浓度为20 mmol/L条件下,在30℃降解反应120 min,其化学需氧量(COD)去除率为53.5%,总有机碳(TOC)去除率为62.2%,降解过程遵循指数衰减规律,为焦油蒸馏废水的预处理技术提供了一条新的途径。  相似文献   

3.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

4.
在旋转填料床中进行Fe~(2+)/O_3降解硝基苯废水的实验研究,并考察了初始pH、超重力因子β、液体流量、Fe~(2+)浓度对硝基苯去除率的影响。结果表明,在硝基苯质量浓度为175 mg/L、臭氧质量浓度为40 mg/L、气体流量为75 L/h、pH为3.5、超重力因子β=80、液体流量为140 L/h、Fe~(2+)浓度为0.4 mmol/L、循环处理40 min的条件下,硝基苯去除率和COD去除率分别为99.5%和67.97%。相同实验条件下,与O_3-RPB相比,该工艺的硝基苯去除率和COD去除率分别提高了7.1%和27.51%;与Fe~(2+)/O_3/BR工艺相比,该工艺的硝基苯去除率和COD去除率分别提高了27.2%和32.55%。表明将超重力技术与均相催化臭氧技术相结合,可实现硝基苯的高效降解。  相似文献   

5.
《应用化工》2016,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr~(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr~(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr~(6+)浓度高这一水质特色,先用Fe~(2+)还原Cr~(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe~(2+)、Fe~(3+)、Cr~(3+)、Cr~(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr~(6+)、COD和总铬的同步去除。  相似文献   

6.
在旋转填充床(RPB)中,研究了O3/Fenton工艺处理模拟焦化废水的效果。考察了Fe2+浓度、旋转床转速、液体流量、气体流量及初始p H值对化学需氧量(COD)去除率及溶液中苯酚、苯胺、喹啉和NH3-N去除率的影响。结果表明,在p H值为6,温度25℃,液体流量20 L/h,气体流量5 L/h,转速1 000 r/min,H2O2的浓度为6.5 mmol/L,Fe2+浓度为0.4 mmol/L的条件下,模拟焦化废水的COD的去除率达到43.57%,废水中苯酚的去除率达81.56%,苯胺为100%,喹啉为81.17%,NH3-N为100%。  相似文献   

7.
采用Fenton-NaClO组合氧化法对煤制甲醇污水进行深度处理。确定了最佳的Fenton氧化条件:H_2O_2投加量为90 mmol/L,Fe~(2+)浓度为30 mmol/L,p H=4,反应时间为60 min。最佳的NaClO氧化条件:p H=6,NaClO浓度为40 mmol/L,反应时间为60 min。经Fenton-NaClO组合氧化法处理后,出水COD、氨氮分别从280、130 mg/L降到43、8 mg/L,均可满足《污水综合排放标准》(GB 8978—1996)中规定的一级排放标准。  相似文献   

8.
宋立杰 《净水技术》2020,39(8):102-108
针对苯胺污染地下水的异位修复问题,采用Fenton及臭氧氧化法进行处理,以TOC和苯胺的去除率为指标,分别对其工艺参数进行了优化,并对比分析了降解途径、去除效率和经济成本。结果表明,Fenton氧化去除苯胺的最佳工艺条件:当初始pH值为3.0、H_2O_2投加量为300 mmol/L、Fe~(2+)和H_2O_2的摩尔比为1∶3时,苯胺的去除率可以达到91.07%;臭氧氧化法的最佳工艺条件:当初始pH值为9、曝气速率为1 L/min、臭氧的投加量为360 mg/L、进气中臭氧的浓度为60 mg/L时,苯胺的去除率可以达到99.15%。成本核算表明,臭氧比Fenton反应具有更好的经济效益。降解途径分析表明,Fenton反应及碱性条件下臭氧反应过程中,硝基苯为苯胺氧化过程中的主要中间产物。  相似文献   

9.
利用微电解-Fenton组合工艺对油田压裂废水展开预处理研究,以COD去除率为考察指标,单独工艺正交试验结果表明:微电解的最优反应条件为Fe/C摩尔比2∶3、铁碳投加量50 g/L、反应时间60 min、pH值3;Fenton反应的最优条件为p H值3、反应时间90 min、H_2O_2加量12 m L/L、H_2O_2/Fe~(2+)摩尔比30。在最佳条件下,微电解和Fenton反应的COD去除率分别可达56.87%和45.61%,废水COD值由3 715 mg/L降至867.9 mg/L,总去除率达到76.54%。出水水质满足油田现场循环回用的标准。  相似文献   

10.
采用Fenton氧化法对含油废水进行了深度处理,探讨了H_2O_2浓度、氧化剂与催化剂比例及催化剂改进等因素对废水中COD、BOD_5去除率的影响,结果表明:(1)随着H_2O_2浓度增加,含油废水中COD和BOD_5的去除率均呈现出先增加后逐渐下降或稳定的趋势,在浓度为40mmol/L时达到最大值;(2)随着氧化剂︰催化剂比例的增加,COD的去除率随之逐渐下降;(3)在H_2O_2浓度为60 mmol/L、H_2O_2︰Fe~(3+)为10︰1、pH值为3的正交实验条件下,其平均去除率最高,达到了73.48%,该结论可为含油废水深度处理提供实验依据。  相似文献   

11.
The degradation and mineralization of aniline(AN) using ozone combined with Fenton reagent(O_3/Fenton) in a rotating packed bed(RPB) was proposed in this study, and the process(RPB-O_3/Fenton) was compared with conventional O_3/Fenton in a stirred tank reactor(STR-O_3/Fenton) or single ozonation in an RPB(RPB-O_3). Effects of high gravity factor, H_2O_2 dosage, H_2O_2 dosing method and initial p H on the AN mineralization efficiency were investigated in the RPB-O_3/Fenton process. In addition, the behavior of Fe(II) was monitored at different H2 O2 dosing methods and p H values. Finally, the optimal operation conditions were determined with high gravity factor of100, initial pH of 5, Fe(II) concentration of 0.8 mmol·L~(-1) and H_2O_2 dosage of 2.5 ml. Under these conditions, for aniline wastewater at the volume of 1 L and concentration of 200 mg·L~(-1), a fast and thorough decay of AN was conducted in 10 min, and the TOC removal efficiency reached 89% in 60 min. The main intermediates of p-benzoquinone, nitrobenzene, maleic acid and oxalic acid were identified by liquid chromatography/mass spectroscopy(LC/MS), and the degradation pathways of AN in RPB-O_3/Fenton system were proposed based on experimental evidence. It could be envisioned that high-gravity technology combined with O_3/Fenton processes would be promising in the rapid and efficient mineralization of wastewater.  相似文献   

12.
在旋转填充床(RPB)中超重力环境下采用O3/Fenton法处理含硝基苯废水,考察了Fenton试剂投加次数、超重力因子β、液体流量、初始pH值、Fe2+投加量、H2O2与Fe2+摩尔比对硝基苯去除率的影响. 结果表明,在硝基苯浓度175 mg/L、反应温度25℃、气体流量75 L/h、臭氧浓度40 mg/L、分3次投加Fenton试剂、溶液初始pH值4.5、超重力因子β=80、液体流量140 L/h和Fe2+总投加量1 mmol/L、摩尔比H2O2:Fe2+=5、循环处理40 min的条件下,硝基苯去除率和化学需氧量(COD)去除率分别为99.6%和87.6%. 相近条件下,与RPB-Fenton法相比,硝基苯去除率和COD去除率分别提高了36.3%和4.5%,与RPB-O3法相比分别提高了7.2%和47.1%,与BR(鼓泡反应器)-O3/Fenton法相比分别提高了11.3%和47.8%.  相似文献   

13.
采用零价铁(ZVI)/Fe2+/H2O2类Fenton法深度处理造纸法烟草薄片废水(二级生化出水),探讨了反应时间、初始pH、Fe2+浓度、H2O2浓度和ZVI质量浓度对COD和色度去除效果的影响。结果表明,当反应时间为60 min、初始pH为5.0、Fe2+浓度为1.0 mmol/L、ZVI质量浓度为2.0 g/L、H2O2浓度10 mmol/L时,处理后色度为84 C.U.、脱色率为95.5%;COD为73 mg/L,COD去除率为80.4%。与传统Fenton法对比发现,ZVI/Fe2+/H2O2类Fenton法具有可在弱酸性条件下(pH=5.0)使用、总铁需求量少(减少26%)和产泥量少(减少2/3左右)的优点。  相似文献   

14.
采用微波酸活化的方法对粉煤灰进行了改性,并将Fenton试剂氧化和改性后的粉煤灰吸附联合处理焦化废水。考察了Fenton氧化及活化后的粉煤灰吸附过程中的主要因素对降解效果的影响,实验结果表明:在反应温度为60 ℃、初始pH=3、双氧水浓度为100 mmol/L、铁(Ⅱ)质量浓度为0.4 g/L的最佳条件下,加入30 g/L的活化粉煤灰、经过120 min处理,焦化废水的COD去除率可达92%。  相似文献   

15.
采用水热法制备了GO/Fe_3O_4/ZnO复合材料,并用SEM、FT-IR、XRD等手段对其进行了表征。以苯酚为降解目标,探讨了GO/Fe_3O_4/ZnO复合材料用量、H_2O_2投加量、苯酚浓度和pH等因素对降解苯酚效果的影响。实验结果表明,在GO/Fe_3O_4/ZnO投加量为200 mg/L,H_2O_2投加量为12 mmol/L,pH=7.2的条件下,利用该复合材料对苯酚质量浓度为88.85 mg/L的油田污水进行光催化Fenton降解,60 min后,苯酚降解率可达98%。  相似文献   

16.
以偶氮染料橙黄G(OG)为目标污染物,研究Fe2+分别催化H2O2、S2O82-、H2O2-S2O82-降解0.1 mmol/L OG Fe2+/H2O2体系,[Fe2+]=1 mmol/L, pH=3, [H2O2]0=10 mmol/L,降解30 min OG脱色率为96%,随着pH值增大和[H2O2]0>10 mmol/L,OG脱色率减小,呈线性变化。Fe2+/S2O82-体系,随着S2O82-初始浓度增加OG脱色率增大,随着pH值增大OG脱色率减小,呈非线性变化。Fe2+/H2O2-S2O82-体系,pH=3, [H2O2]0=2 mmol/L, [S2O82-]0>10 mmol/L时OG脱色率持续增大。Fe2+/H2O2-S2O82-体系矿化率最高。利用乙醇和硝基苯作为分子探针,采用分子探针竞争实验鉴定该体系中产生的SO4?和OH?。  相似文献   

17.
Fenton试剂法处理苯酚废水的研究   总被引:7,自引:0,他引:7  
采用Fenton试剂法以苯酚水样为处理对象,通过试验研究分析各因素对体系处理苯酚废水效果的影响.试验研究结果表明,对于质量浓度为100 mg·L-1的苯酚废水,试验确定的最佳反应条件为:H2O2投加量为14 mmol·L-1,Fe2+投加量为1.2 mmol·L-1,初始pH值为3,反应时间为30 min.在此条件下苯酚最大去除率达到了99.6%.  相似文献   

18.
采用Fe(Ⅱ)(EDTA)/O3工艺处理含聚废水,研究EDTA浓度、Fe2+浓度、水力停留时间(HTR)、初始pH对聚丙烯酰胺(PAM)去除率和COD降解效能的影响,探讨了Fe(Ⅱ)络合催化臭氧反应动力学特征及其机理。结果表明:当EDTA浓度为0.050mmol/L、Fe2+浓度为0.050mmol/L和HRT为120min时,PAM去除率为75%;增加水样初始pH有利于提高PAM去除率,同时水样pH随HRT增加缓慢下降;废水COD值在HRT为30min内逐渐增至最大,随后逐渐减小并达到稳定。Fe(II)(EDTA)/O3工艺处理含聚废水的反应符合二级动力学反应,初始PAM质量浓度在50~100mg/L范围内,二级反应速率常数为2.35×10-4~3.35×10-4L/(mg·min)。  相似文献   

19.
周鸣  许景明  耿丹丹 《广州化工》2014,(10):80-82,91
利用混凝-Fenton法对中晚期垃圾渗滤液进行预处理研究。首先以PAC为混凝剂,PAM为助凝剂对垃圾渗滤液进行混凝处理,然后对混凝后渗滤液进行Fenton氧化。考察混凝剂用量,起始pH值,H2O2/FeSO4·7H2O投加比,Fenton试剂投药量和搅拌速度对垃圾渗滤液COD去除的影响,并进行正交试验分析。结果表明:混凝法的最佳投药量为1 L渗滤液投加1.5 g PAC和5 mg PAM;Fenton法的最佳条件为:起始pH值为3,H2O2/FeSO4·7H2O投加比为8∶1,Fenton试剂投药量为135 g/L,搅拌速度为150 r/min;各因素对Fenton试验影响大小为:起始pH值Fenton试剂投药量搅拌速度。在最佳条件下,混凝-Fenton法对垃圾渗滤液COD去除率可达91.41%。  相似文献   

20.
采用Fenton氧化对焦化废水进行了深度处理。结果表明:Fenton氧化反应迅速,可迅速降低焦化废水生化出水的COD;H2O2和Fe2+的投加量对Fenton氧化具有明显的影响;pH=3时反应体系具有最佳的COD去除效果。在H2O2投加量为1.994 mL/L,FeSO4.7H2O投加量为0.543 g/L,pH=3,温度为35℃的条件下,反应出水COD低于100 mg/L,去除率可达72.7%;Fenton氧化可有效去除生化出水中的难降解有机物。实验结果表明Fenton氧化是深度处理焦化废水的有效工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号