首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
The transverse tubule system (T-tubule, T-system) of skeletal muscle is a membranous network that penetrates the interior of myofibers. The T-system is continuous with the sarcolemma and therefore provides a path for membrane excitation to reach internal myofibrils. In this study we demonstrate that T-tubules in elasmobranch fish, frog, and rat skeletal muscle contain a matrix of chondroitin sulfate proteoglycans. We used anti-T1, a mouse monoclonal antibody that recognizes a rare chondroitin sulfate epitope, for immunolocalization and biochemical studies. First, we find that T1 immunoreactivity colocalizes with a T-tubule marker, the dihydropyridine receptor alpha 2 subunit, in both frog and fish muscle. Secondly, the distribution of T1 immunoreactivity exactly matches the different distribution of T-tubules in rat and frog muscle. In rat muscle, two bands of T1 immunoreactivity are detected per sarcomere, a distribution that corresponds to the T-tubules located at the two A-I junctions of each sarcomere. In frog muscle, we detect one band of T1 immunoreactivity per sarcomere that corresponds to the one T-tubule per sarcomere located at the Z line. Lastly, we have isolated and biochemically characterized T1 antigenicity from fish skeletal muscle. Like extracellular matrix proteoglycans of cartilage, T1 antigenicity requires denaturing conditions to be solubilized. In fish muscle, two chondroitin sulfate proteoglycans bear T1: a heavily glycosylated proteoglycan with a molecular mass of about 1000 kDa, and a smaller proteoglycan that has a mobility on SDS-PAGE like a protein of molecular mass 280 kDa. We propose that proteoglycans function as structural components in the T-system. The proteoglycans may form a matrix, like the one formed by the cartilage proteoglycans they resemble, that can withstand the cytosolic osmotic pressures present in muscle cells and therefore may prevent the T-tubule from collapsing. We present a quantitative argument in support of this hypothesis.  相似文献   

2.
BACKGROUND: Cultured bovine corneal endothelial cells (CEC) synthesize heparan sulfate and dermatan sulfate containing proteoglycans and distribute them between different compartments. METHODS AND RESULTS: [35S]sulfate labelled proteoglycans are found associated with the cell layer, secreted into the culture medium and deposited into the underlaying extracellular matrix. In the presence of basic fibroblast growth factor (bFGF)-a strong mitogen for CEC-subconfluent cells incorporate [35S]sulfate into the sulfated proteoglycans at a rate three times higher as compared with the proteoglycans of CEC in the absence of bFGF. The enhanced proteoglycan synthesis is accompanied with a shift in the proteoglycan distribution pattern. While in control cells the cell-associated heparan sulfate accounts for about 30% of the total glycosaminoglycans under the influence of bFGF the HS percentage increases to approximately 60%. CONCLUSIONS: CEC synthesize and deposit endogenous bFGF into the extracellular matrix. Heparitinase treatment of the extracellular matrix releases bFGF activity which is able to stimulate the 35S incorporation into proteoglycans in a comparable manner as exogenous bFGF but does not influence the proteoglycan distribution pattern. Pretreatment of the matrix-bound bFGF activity with polyclonal antibodies against bFGF abolishes its stimulating activity.  相似文献   

3.
The movement of neural crest cells is controlled in part by extracellular matrix. Aggrecan, the chondroitin sulfate proteoglycan from adult cartilage, curtails the ability of neural crest cells to adhere, spread, and move across otherwise favorable matrix substrates in vitro. Our aim was to isolate, characterize, and compare the structure and effect on neural crest cells of aggrecan and proteoglycans purified from the tissues through which neural crest cells migrate. We metabolically radiolabeled proteoglycans in E2.5 quail embryos and isolated and characterized proteoglycans from E3.3 quail trunk and limb bud. The major labeled proteoglycan was highly negatively charged, similar in hydrodynamic size to chick limb bud versican/PG-M, smaller than adult cartilage aggrecan but larger than reported for embryonic sternal cartilage aggrecan. The molecular weight of the iodinated core protein was about 400 kDa, which is more than reported for aggrecan but less than that of chick versican/PG-M. The proteoglycan bore chondroitin sulfate glycosaminoglycan chains of 45 kDa, which is larger than those of aggrecan. It lacked dermatan sulfate, heparan sulfate, or keratan sulfate chains. It bound to collagen type I, like aggrecan, but not to fibronectin (unlike versican/PG-M), collagen type IV, or laminin-1 in solid-phase assays and it bound to hyaluronate in gel-shift assays. When added at concentrations between 10 and 30 microg/ml to substrates of fibronectin, trunk proteoglycan inhibited neural crest cell spreading and migration. Attenuation of cell spreading was shown to be the most sensitive and titratable measure of the effect on neural crest cells. This effect was sensitive to digestion with chondroitinase ABC. Similar cell behavior was also produced by aggrecan and the small dermatan sulfate proteoglycan decorin; however, 30-fold more aggrecan was required to produce an effect of similar magnitude. When added in solution to neural crest cells which were already spread and migrating on fibronectin, the embryonic proteoglycan rapidly and reversibly caused complete rounding of the cells, being at least 30-fold more potent than aggrecan in this activity.  相似文献   

4.
This study examines the early organization of glial cells, together with the expression of chondroitin sulfate proteoglycans in the developing thalamus of ferrets. Glia were identified with antibodies against vimentin and glial fibrillary acidic protein and the chondroitin sulfate proteoglycans were identified by using an antibody against chondroitin sulfate side chains. Our results reveal three striking features of early thalamic development. First, there is a distinct population of glial fibrillary acidic protein-immunoreactive astrocytes (first seen at E30) that resides in the perireticular thalamic nucleus of the primordial internal capsule. These glial fibrillary acidic protein-immunoreactive astrocytes of the perireticular nucleus are transient and form a conspicuous feature of the early developing forebrain. They are first apparent well before any glial fibrillary acidic protein-immunoreactive astrocytes are seen in other regions of the thalamus (at about P8). Further, unlike in other thalamic regions, these peculiar perireticular astrocytes do not express vimentin before they express glial fibrillary acidic protein. Second, in the reticular thalamic nucleus, the radial glial cells express glial fibrillary acidic protein; they are the only ones to do so in the thalamus during development. The glial fibrillary acidic protein-immunoreactive radial glial cells of the reticular nucleus form a rather distinct band across the developing thalamus at these early stages (E30-P1). Finally, and preceding the expression of glial fibrillary acidic protein, the radial glial cells of the reticular nucleus, unlike those in other thalamic regions, are associated closely with the expression of chondroitin sulfate proteoglycans (E20-E30). Later (after E30), the expression of the chondroitin sulfate proteoglycans in the reticular nucleus declines sharply. The significance of this finding is related to the early organization of the cortico-fugal and cortico-petal pathways.  相似文献   

5.
BACKGROUND AND OBJECTIVES: Proteoglycans of the extracellular matrix are vital to the growth and evolution of malignant neoplasms. The present study determined the composition of proteoglycans isolated from paired specimens of normal breast and adenocarcinoma of the breast harvested from each patient (n = 8). The proteoglycans were then tested for their ability to stimulate endothelial cell proliferation. METHODS: Proteoglycans were isolated by extraction with 4 M guanidine hydrochloride and purified by CsCl density-gradient centrifugation. The proteoglycans were characterized and tested for their ability to simulate endothelial cell proliferation. RESULTS: In each case, the total proteoglycan content of the tumor was significantly greater than that of the corresponding normal tissue. The proteoglycans isolated from the carcinoma contained 32.2% (13.7/42.5) more chondroitin sulfate, 18.5% (5.6/30.2) less dermatan sulfate, and 29.6% (8.1/27.3) less heparan sulfate than did the proteoglycans of normal breast tissue. Proteoglycans from normal tissue did not stimulate endothelial cell proliferation, whereas those from malignant tissue stimulated proliferation by 1.3- to 1.5-fold. CONCLUSIONS: These results indicate that malignant breast tissue exhibits both qualitative and quantitative changes in proteoglycan composition, which, in turn, may stimulate endothelial cell proliferation.  相似文献   

6.
During follicular development the proliferative and differentiated state of the epithelioid granulosa cells changes, and the movement of fluid across the follicular basal lamina enables the formation of an antrum. Type IV collagen is an important component of many basal laminae. Each molecule is composed of three alpha chains; however, six different type IV collagen chains have been identified. It is not known which of these chains are present in the follicular basal lamina and whether the type IV collagen composition of the basal lamina changes during follicular development. Therefore, we immunolocalized each of the six chains in bovine ovaries using antibodies directed to the nonconserved non-collagenous (NC) domains. Additionally, dissected follicles were digested with collagenase to release the NC domains, and the NC1 domains were then detected by standard Western immunoblot methods. The follicular basal lamina of almost all primordial and preantral follicles was positive for all type IV collagen alpha chains. Colocalization of type IV collagen and factor VIII-related antigen allowed for discrimination between the follicular and endothelial basal laminae. Type IV collagen alpha1, alpha2, alpha3, alpha4, and alpha5 chains were present within the follicular basal lamina of only a proportion of antral follicles (17 of 22, 20 of 21, 15 of 18, 14 of 28, and 12 of 23, respectively), and staining was less intense than in the preantral follicles. Staining for the alpha1 and alpha2 chains was diffusely distributed throughout the theca in regions not associated with recognized basal laminae. The specificity of this immunostaining for alpha1 and alpha2 chains of type IV collagen was confirmed by Western immunoblots. As well as being detected in the basal lamina of approximately half of the antral follicles examined, type IV collagen alpha4 also colocalized with 3beta-hydroxysteroid dehydrogenase-immunopositive cells in the theca interna. Type IV collagen alpha6 was detected in the basal lamina of only one of the 16 antral follicles examined. Thus, the follicular basal lamina changes in composition during follicular development, with immunostaining levels being reduced for all type IV collagen chains and immunoreactivity for type IV collagen alpha6 being lost as follicle size increases. Additionally, immunoreactivity for alpha1 and alpha2 appears in the extracellular matrix of the theca as it develops.  相似文献   

7.
Proteoglycans play a role in regulating proliferation and adhesion of cells to each other and to the basal lamina. Synthesis of proteoglycans is disrupted by beta-xylosides, which serve as alternate substrate sites for glycosaminoglycan chain attachment and therefore prevent glycosylation of the core protein. We have investigated the effects of p-nitrophenyl-beta-D-xylopyranoside (PNP-xyloside) on cultured human keratinocytes. Stratified cultures were incubated for 7 days with PNP-xyloside (0.05-2.0 mM). Concentrations as low as 0.05 mM increased the secretion of free chondroitin sulfate by 10-15-fold over untreated cultures. Cell-associated proteoglycan decreased as PNP-xyloside concentration increased. At 2 mM PNP-xyloside, heparan sulfate as well as chondroitin sulfate addition to core proteins was disrupted: the core protein of epican, a heparan sulfate form of CD44 found on keratinocytes, was detected immunologically but lacked heparan sulfate. 2.0 mM PNP-xyloside reduced the number of attached cells by 20-25% after 7 days, but had little effect on morphology or protein synthesis. These results indicate that intact proteoglycans are not critical for maintaining epidermal keratinocyte stratification, cell-cell adhesion, or growth.  相似文献   

8.
We mapped the distribution of neuregulin and its transmembrane precursor in developing, embryonic chick and mouse spinal cord. Neuregulin mRNA and protein were expressed in motor and sensory neurons shortly after their birth and levels steadily increased during development. Expression of the neuregulin precursor was highest in motor and sensory neuron cell bodies and axons, while soluble, released neuregulin accumulated along early motor and sensory axons, radial glia, spinal axonal tracts and neuroepithelial cells through associations with heparan sulfate proteoglycans. Neuregulin accumulation in the synaptic basal lamina of neuromuscular junctions occurred significantly later, coincident with a reorganization of muscle extracellular matrix resulting in a relative concentration of heparan sulfate proteoglycans at endplates. These results demonstrate an early axonal presence of neuregulin and its transmembrane precursor at developing synapses and a role for heparan sulfate proteoglycans in regulating the temporal and spatial sites of soluble neuregulin accumulation during development.  相似文献   

9.
Numerous findings support the possibility that highly sulfated proteoglycans are inhibitory molecules which, at high concentration relative to growth-promoting signals, may regulate or guide axonal growth. Although most studies implicate sulfated proteoglycans in the poor regenerative capacity of the central nervous system, inhibitory proteoglycans also may play an important role in the successful regeneration of axons within peripheral nerve. Cultured rat schwannoma and Schwann cells produce chondroitin sulfate proteoglycan (CSPG) which binds to and inhibits the neurite-promoting activity of laminin [Muir et al. (1989) J. Cell Biol. 109:2353]. In the present study, we found a similar neurite-inhibiting activity associated with CSPG isolated from normal adult rat sciatic nerve. Following nerve crush injury, this inhibitory activity was increased sevenfold in regenerating nerve distal to the injury. This increase was largely attenuated by in vivo administration of the proteoglycan synthesis inhibitor beta-D-xyloside. In normal adult nerve, immunolabeling for CSPG core protein was concentrated in slender bands surrounding axon-Schwann cell units and within nodes of Ranvier. Following nerve crush injury, immunolabeling of CSPG and laminin became more intense in distal nerve and CSPG increased within endoneurium and surrounding nerve sheaths. Embryonic dorsal root ganglionic neurons cultured on longitudinal nerve sections extended neurites along the exposed surfaces of Schwann cell basal lamina. The length of neurites was increased 58% on normal nerve sections pretreated with chondroitinase. Even though laminin levels were elevated in basal lamina of injured nerve, neuritic growth on sections of injured nerve was not significant increased unless sections were pretreated with chondroitinase. These results indicate that inhibitory CSPG is up-regulated in injured nerve and plays a role in regulating axonal regeneration.  相似文献   

10.
Asymmetric acetylcholinesterase (AChE) is anchored to the basal lamina (BL) of cholinergic synapses via its collagenic tail, yet the complement of matrix receptors involved in its attachment remains unknown. The development of a novel overlay technique has allowed us to identify two Torpedo BL components that bind asymmetric AChE: a polypeptide of approximately 140 kDa and a doublet of 195-215 kDa. These were found to stain metachromatically with Coomassie blue R-250, were solubilized by acetic acid, and were sensitive to collagenase treatment. Upon sequence analysis, the 140 kDa polypeptide yielded a characteristic collagenous motif. Another AChE-binding BL constituent, identified by overlay, corresponded to a heparan sulfate proteoglycan. Lastly, we established that this proteoglycan, but not the collagenous proteins, interacted with at least one heparin binding domain of the collagenic tail of AChE. Our results indicate that at least two BL receptors are likely to exist for asymmetric AChE in Torpedo electric organ.  相似文献   

11.
Light microscopy, scanning electron microscopy and transmission electron microscopy have been used to delineate the structure and function of the lamina propria mucosae in the rat jejunum. In silver-impregnated sections, the adepithelial surface of the lamina propria mucosae was framed by a sheet of reticular fibers (reticular sheet). Short-term (3-hour) immersion of jejunal tissues in 2 N NaOH solution enabled us to simultaneously view networks of reticular fibrils and fibroblasts residing in the subepithelial connective tissue under a scanning electron microscope. The reticular fibrils, which measured about 40 nm in diameter and were interwoven in dense networks, formed a sheet 2-3 microns thick. In the villi, this sheet contained numerous foramina ranging from 3 to 7 microns in diameter, through which lymphocytes, macrophages, basal extensions of epithelial cells and fat particles traversed. The reticular sheet in the domes of isolated lymphoid nodules was markedly porous, and many lymphocytes migrated into or out of the epithelium through the foramina. The formaina of the reticular sheet may participate in the communication between the intestinal epithelium and the lamina propria mucosae. It was noted that the foramina of the reticular sheet in the villi were surrounded by end feet of the cytoplasmic processes of fibroblasts. In addition, these fibroblasts were combined with lymphocytes or dendritic cells in the lamina propria mucosae.  相似文献   

12.
We have investigated the expression patterns and subcellular localization in nervous tissue of glypican, a major glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan that is predominantly synthesized by neurons, and of biglycan, a small, leucine-rich chondroitin sulfate proteoglycan. By laser scanning confocal microscopy of rat central nervous tissue and C6 glioma cells, we found that a significant portion of the glypican and biglycan immunoreactivity colocalized with nuclear staining by propidium iodide and was also seen in isolated nuclei. In certain regions, staining was selective, insofar as glypican and biglycan immunoreactivity in the nucleus was seen predominantly in a subpopulation of large spinal cord neurons. The amino acid sequences of both proteoglycans contain potential nuclear localization signals, and these were demonstrated to be functional based on their ability to target beta-galactosidase fusion proteins to the nuclei of transfected 293 cells. Nuclear localization of glypican beta-galactosidase or Fc fusion proteins in transfected 293 cells and C6 glioma cells was greatly reduced or abolished after mutation of the basic amino acids or deletion of the sequence containing the nuclear localization signal, and no nuclear staining was seen in the case of heparan sulfate and chondroitin sulfate proteoglycans that do not possess a nuclear localization signal, such as syndecan-3 or decorin (which is closely related in structure to biglycan). Transfection of COS-1 cells with an epitope-tagged glypican cDNA demonstrated transport of the full-length proteoglycan to the nucleus, and there are also dynamic changes in the pattern of glypican immunoreactivity in the nucleus of C6 cells both during cell division and correlated with different phases of the cell cycle. Our data therefore suggest that in certain cells and central nervous system regions, glypican and biglycan may be involved in the regulation of cell division and survival by directly participating in nuclear processes.  相似文献   

13.
The purpose of this study was to determine whether or not there are preexisting holes in the endothelial and epithelial basal laminae of alveolar walls and to determine the path taken by neutrophils as they migrate from the capillaries to the airspace of the alveoli during inflammation. Using transmission electron microscopy and serial thin sections of normal rabbit and mouse lung, we have demonstrated the presence of slit-like holes in the capillary basal laminae and round holes in the basal laminae of type 2 pneumocytes. The slits in the capillary basal laminae were observed at the intersection of the thick and thin walls where endothelium, pericytes, and fibroblasts make close contact. The round holes in the type 2 cell basal laminae were observed at sites of close contact with fibroblasts. Neutrophils were observed to migrate through these slits and holes during streptococcal pneumonia in rabbit lungs. We conclude that during inflammation in the lung, migrating neutrophils displace pericytes and fibroblasts from the slits in the capillary basal lamina and then crawl through these slits into the alveolar interstitium. We postulate that neutrophils find their way to type 2 pneumocytes by following interstitial fibroblasts. We believe that neutrophils displace fibroblasts from their close contacts with the type 2 cells and then crawl through the holes in the basal lamina into the basal lateral space of the type 2 cells. From there, neutrophils migrate into the alveolar airspace.  相似文献   

14.
Procollagen and proteoglycan biosynthesis was defined in long-term culture of a human osteogenic sarcoma cell line, SAOS-2. An osteoblast phenotype was maintained by these cells up to 40 days post-confluent in the presence of ascorbic acid. Under these conditions, cells deposited around them an extensive collagenous matrix that was able to mineralize in the presence of an exogenous phosphate donor (beta-glycerophosphate). The collagenous matrix was comprised predominantly of collagen type I with significant amounts of collagen type V, and greater than 80% of the collagen in the matrix was involved in covalent crosslinkages. With increasing time in culture there was a decrease in the collagen synthetic rate, although the collagenous matrix was maintained. The proteoglycans synthesized by nonmineralizing and mineralizing cultures were purified after biosynthetic labeling with [35S]sulfate and [3H]glucosamine. Two major species were apparent: a large chondroitin sulfate proteoglycan (CSPG), and a small chondroitin sulfate proteoglycan, decorin. In nonmineralizing cultures, decorin partitioned equally between the cell layer and culture medium, whereas the large CSPG species partitioned exclusively into the cell layer-associated matrix. In the presence of extensive mineral deposition, greater than 90% of the newly synthesized proteoglycans were secreted into the medium. Northern blot hybridization indicated that SAOS-2 cells express mRNA encoding a range of bone proteins, including decorin, osteonectin, and bone sialoprotein.  相似文献   

15.
We investigated histo-chemically the composition and distribution of proteoglycans in the trabecular tissue of eyes with neovascular glaucoma. Cupromeronic blue in combination with a series of enzyme digestions and nitrous acid treatment were used. The spaces between the trabecular beams were lined by a single layer of vascular endothelium and were filled with red blood cells. A basal lamina and microfibrils were detected just beneath the newly formed vascular endothelial cells. Chondroitin-sulfate- and dermatan-sulfate-type proteoglycans were present in association with collagen fibrils in the extracellular matrix. Heparan-sulfate-type proteoglycans were present in association with the basal lamina of both the vascular endothelial cells and the trabecular cells. It is unlikely that these abnormalities in the type or distribution of proteoglycans in the trabecular meshwork have a major role in the pathogenesis of glaucoma.  相似文献   

16.
Cell nuclei of mouse hepatoma contain various proteoglycans (PG) which include heparan sulfate proteoglycan (HS-PG), dermatan sulfate proteoglycan (DS-PG), and chondroitin sulfate proteoglycan (CS AC-PG). The latter is not found in cell nuclei of normal mouse liver. Heparan sulfate (HS) and dermatan sulfate (DS) are the main constituents of carbohydrate chains of nuclear proteoglycans of tumor and normal cells, respectively. Changes in the composition of nuclear PG during malignant transformation are discussed considering the concept of their possible involvement in the regulation of cell mitotic activity.  相似文献   

17.
OBJECTIVE: To determine whether the concentrations of proteoglycans and hyaluronan in human follicular fluid (FF) are associated with follicular volume, oocyte fertilization, and ET during IVF. DESIGN: The FF from individual follicles were collected. Enzyme-linked immunosorbent assay methods for quantification of a larger chondroitin sulfate proteoglycan and a smaller composite heparan-chondroitin sulfate proteoglycan were established. Hyaluronan and E2 were measured by RIA techniques. PATIENT(S): Sixteen infertile women participating in the IVF program. MAIN OUTCOME MEASURE(S): Concentrations of the proteoglycans, follicular volume, fertilization, and ET rates. RESULT(S): The follicles contained high concentrations of proteoglycans with an average of 0.8 mg/mL of FF, and approximately 70% consisted of the larger chondroitin sulfate proteoglycan, and 30% of the heparan-chondroitin sulfate proteoglycan. A negative correlation was found between the follicular volume, the chondroitin sulfate proteoglycan (r = -0.43), and hyaluronan (r = -0.56). The percentage of embryos developed in culture was significantly higher in follicles larger than 2 mL. A significant and 35% lower concentration of the chondroitin sulfate proteoglycan was found in larger follicles from which subsequent ET was observed. THe heparan-chondroitin sulfate proteoglycan and hyaluronan were both unrelated to fertilization and ET in vitro. CONCLUSION(S): Lower concentrations of chondroitin sulfate proteoglycan were associated with higher follicular volumes and greater fertilization and ET rates. These associations could merely reflect the maturation of the follicle or a role of the chondroitin sulfate proteoglycan in the fertilization process.  相似文献   

18.
The objective of the present study was to investigate the role of the Schwann cell basal lamina in nerve regeneration. To achieve this goal, we observed the process of axonal regeneration within a lyophilized nerve graft, in which only the basal lamina of the Schwann cell persisted. Sciatic nerves were removed from rats and lyophilized to kill the Schwann cells and other components. These grafts were transplanted to rat sciatic nerve defects. The rats were then killed after lapses of time. We observed the processes of axonal regeneration using a transmission electron microscope. Regeneration of axons along the inner surface of the Schwann cell basal lamina was clearly seen. These results suggest that, if tubular basal laminae persist, Schwann cells are not always necessary, and axonal regeneration can be induced in the direction toward the basal lamina.  相似文献   

19.
We recently reported that peritoneal fluid mainly contains two proteoglycans; one is the interstitial proteoglycan referred to as decorin, and the other an uncharacterized small chondroitin sulfate proteoglycan. In the present study, we have used a two-step process to isolate the small chondroitin sulfate proteoglycan free of decorin. The purified molecule ran as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular mass 50 kd made up of a chondroitin-4-sulfate glycosaminoglycan chain and a 30-kd core protein. NH2-terminal analysis of the core protein showed significant sequence homology with bikunin, a component of the human inter-alpha-trypsin inhibitor (IalphaI) family. A Western blot analysis using anti-human inter-alpha-trypsin inhibitor confirmed the identity of the small chondroitin sulfate proteoglycan as bikunin, and a trypsin inhibitor counterstain assay confirmed its anti-trypsin activity. Examination of serum from patients receiving continuous peritoneal dialysis suggests that free bikunin in peritoneal fluid may be the result of leakage of serum proteins into the peritoneum. Our findings further show that the interaction of serum with peritoneal mesothelial cells offers a new and novel explanation for the presence of bikunin in peritoneal fluid.  相似文献   

20.
ARH-77 cells do not adhere to type I collagen and readily invade into collagen gels, but following expression of the transmembrane heparan sulfate proteoglycan syndecan-1, they bind collagen and fail to invade. We now show that cells transfected with syndecan-2 or syndecan-4 also bind collagen and are non-invasive. In contrast, cells transfected with the glycosylphosphatidylinositol-anchored proteoglycan glypican-1 do not bind to collagen and remain invasive, even though glypican- and syndecan-expressing cells have similar surface levels of heparan sulfate, and their proteoglycans have similar affinities for collagen. Analysis of cells expressing syndecan-1-glypican-1 chimeric proteoglycans reveals that inhibition of invasion requires the extracellular domain of syndecan but not its transmembrane or cytoplasmic domain. Surprisingly, cells bearing a chimera composed of the glypican extracellular domain fused to the syndecan transmembrane and cytoplasmic domains bind to collagen but remain invasive, implying that adhesion to collagen is not by itself sufficient to inhibit invasion. Apparently, the extracellular domain of syndecan-1, presumably by interacting with cell-surface signal transducing molecules, directly regulates complex cell behaviors such as motility and invasiveness. These results also show for the first time that syndecans and glypicans can have distinct functions, even when expressed by the same cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号