首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

2.
Mo/TiO2 catalysts were modified with Nb by two different methods, sol–gel and surface deposition, in order to study the effect of Nb incorporation on the thiophene HDS activity. The results show that the formation of Nb–Ti mixed oxides leads to catalysts with poor HDS activity while the deposition of Nb oxide species on the surface of TiO2 leads to catalysts with activities larger than those of Mo/Al2O3 and Mo/TiO2. This increase in activity was attributed to the formation of a larger population of Mo sulfur anionic vacancies when Nb was surface deposited on the TiO2.  相似文献   

3.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

4.
In the present work, a comparative study on the deactivation behavior of three types of industrial hydrotreating catalysts, namely, Mo/Al2O3, Ni–Mo/Al2O3 and Ni–MoP/Al2O3, that are used to promote primarily hydrodemetallization (HDM), hydrodesulphurization (HDS) and hydrodesulphurization + hydrodenitrogenation (HDS/HDN) reactions, respectively, in the first, second and third reactor of commercial atmospheric residue desulfurization (ARDS) units was carried out. The main objective of the study was to contribute to a better understanding of the relationship between catalyst type and catalyst deactivation patterns. The used catalysts from these experiments were fully characterized to determine the extent and the cause of deactivation. Special emphasis was paid to understanding the nature of the coke and metal deposition on the used catalysts by applying chemical analysis and various advanced analytical techniques, such as solid-state carbon-13 nuclear magnetic resonance spectroscopy (13C NMR), temperature-programmed oxidation (TPO), electron probe micro-analysis (EPMA), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The results are discussed scientifically based on the physico–chemical properties of the three catalysts.  相似文献   

5.
A series of phosphorus promoted γ-Al2O3 supported NiMo carbide catalysts with 0–4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H2 temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/γ-Al2O3 carbide, increased the dispersion of β-Mo2C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/γ-Al2O3 carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/γ-Al2O3 carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/γ-Al2O3 carbide catalysts showed enhanced HDN activity compared to the NiMo/γ-Al2O3 catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/γ-Al2O3 carbide with LGO and dibenzothiophene. P addition to NiMo/γ-Al2O3 carbide accelerated CN bond breaking and thus increased the HDN activity.  相似文献   

6.
Evaluation of Co---Mo catalysts prepared on various TiO2-Al2O3 supports has been made for thiophene under atmospheric pressure, dibenzothiophene under high pressure and gasoil in a classical pilot plant. Comparison of activities indicates DBT as more representative of a real feedstock and the Co---Mo/TiO2 (50%)-Al2O3 (50%) catalyst appears more active than the Co---Mo/Al2O3 sample toward HDS, HDN and hydrodearomatization.  相似文献   

7.
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD), BET, temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS). The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene, pyridine, dibenzothiophene, carbazole and diesel oil as the feedstock. The TiO2, ?-Al2O3 supports and the Ni, Co promoters could remarkably increase and stabilize active W species on the catalyst surface. A suitable amount of Ni (3%–5%), Co (5%–7%) and V (1%–3%) could increase dispersivity of the W species and the BET surface area of the WP/?-Al2O3 catalyst. The WP/?-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities. The Ni, Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/?-Al2O3 catalyst. The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/?-Al2O3 catalyst. In general, a support or promoter in the WP/?-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.  相似文献   

8.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

9.
Mo---Co or Mo---Ni catalysts supported on alumina (Al2O3) have been widely used for hydrodesulfurization (HDS) of heavy petroleum fractions. In order to enhance the catalytic activities for HDS, a composite type support (TiO2-Al2O3) prepared by the chemical vapor deposition (CVD) method has been studied. We found that Mo catalyst supported on TiO2-Al2O3 showed much higher catalytic activity for HDS of dibenzothiophene derivatives than the catalysts supported on Al2O3.  相似文献   

10.
Catalytic activities of Al2O3–TiO2 supporting CoMo and NiMo sulfides (CoMoS and NiMoS) catalysts were examined in the transalkylation of isopropylbenzene and hydrogenation of naphthalene as well as the hydrodesulfurization (HDS) of model sulfur compounds, conventional gas oil (GO), and light cycle oil (LCO). Al2O3–TiO2 supporting catalysts exhibited higher activities for these reactions except for the HDS of the gas oil than a reference Al2O3 supporting catalyst, indicating the correlation of these activities. Generally, more content of TiO2 promoted the activities. Inferior activity of the catalyst for HDS of the gas oil is ascribed to its inferior activity for HDS of dibenzothiophene (DBT) in gas oil as well as in model solvent decane, while the refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) in gas oil as well as in decane was more desulfurized on the catalyst. Characteristic features of Al2O3–TiO2 catalyst are discussed based on the paper results.  相似文献   

11.
Alumina–titania supports containing 5–50 wt.% of TiO2 were prepared by coprecipitation method using inorganic precursors (sodium aluminate and titanium chloride). DTA-TGA, XRD, SEM, TPDNH3, and IR spectroscopy were used to characterise these materials. The study shows that the promoting effect of nickel on the HDS activity of molybdenum catalysts supported on Al2O3TiO2 is significantly lower than that for molybdenum catalyst supported on Al2O3, and depends on the TiO2 content. The SEM results show that in the case of rich Al support (20 wt.% of TiO2) molybdenum was aggregated on the external surface of the catalyst, whereas it was uniformly dispersed on the external surface of alumina. Results also show that molybdenum is preferably supported on aluminum oxide. Application of Al2O3TiO2 oxides enhances the HDN activity of nickel–molybdenum catalysts. The highest HDN efficiency was obtained for the NiMo/Al2O3TiO2 catalyst containing 50 wt.% of TiO2. HDN activity was found to depend on protonic acidity and anatase content.  相似文献   

12.
A series of Re-containing catalysts supported on activated carbon, with Re loading between 0.74 and 11.44 wt.% Re2O7, was prepared by wet impregnation and tested in the simultaneous hydrodesulphurisation (HDS) and hydrodenitrogenation (HDN) of a commercial gas oil. Textural analysis, XRD, X-ray photoelectron spectroscopy (XPS) and surface acidity techniques were used for physicochemical characterisation of the catalysts. Increase in the Re concentration resulted in a rise in the HDS and HDN activity due to the formation of a monolayer structure of Re and the higher surface acidity. At Re concentrations >2.47 wt.% Re2O7 (0.076 Re atoms nm−2) the reduction in the catalytic activity was related to the loss in specific surface area (BET) due to reduction in the microporosity of the carbon support. The magnitude of the catalytic effect was different for HDS and HDN, and depended strongly on the Re content and reaction temperature. The apparent activation energies were about 116–156 kJ mol−1 for HDS and 24–30 kJ mol−1 for HDN. This led to a marked increase in the HDN/HDS selectivity with decreasing temperature (values >3 at 325 °C), due to the large differences in the apparent activation energies of HDS and HDN found for all catalysts. A gradual increase in the HDN/HDS selectivity with increased Re loading was also found and related to the observed increase of catalyst acidity. The results are compared with those obtained for a series of Re/γ-Al2O3 catalysts.  相似文献   

13.
Hu Chun  Tang Yuchao  Tang Hongxiao 《Catalysis Today》2004,90(3-4):325-materials
TM/TiO2/SiO2 photocatalysts were prepared by the photodeposition method using transition metal salts (TM=Fe3+, Co2+, Ni2+ and Cu2+) as precursors and the surface bond-conjugated TiO2/SiO2 as supporter in N2 atmosphere, and were characterized by XRD, XPS, UV-Vis diffuse reflection and zeta-potential. Their photocatalytic activities were evaluated using reactive brilliant red K-2G (K-2G) and cationic blue X-GRL (CBX) showing different adsorption behavior on the oxides. Fe, Cu supported TiO2/SiO2 can efficiently extend the light absorption to the visible region. XPS analysis verified that the introduction of transition metal lead to the changes of the electronic environmental of Ti cations and the zeta-potential of oxides. As a result, K-2G has higher adsorption on the modified TiO2/SiO2 than that on the baked one, while the adsorption of CBX has a little change on the both oxides. At the same time, for the photodegradation of K-2G, Fe3+, Co2+, Ni2+-modified catalysts show that their photoactivities are 3.3–2.2 times higher than the bare one. On the contrast, all transition-metal-supported catalysts have no significant activity improvement except that Fe/TiO2/SiO2 shows 1.68 times higher activity for the photodegradation of CBX. The results indicate that the photoactivity could be increased in photodegradation of dyes by changing the performances of adsorption to dyes and absorption to light of photocatalyst.  相似文献   

14.
The conversion of C3 organic compounds (propane, propene, 1- and 2-propanol, allyl alcohol, propanal, acrolein, acetone and 1- and 2-chloropropane) in the presence of excess oxygen has been investigated over two V–W–TiO2 commercial SCR catalysts differing in the V content and over Mn–TiO2 alternative SCR catalysts. V–W–Ti catalysts show poor activity in the oxidation of hydrocarbons and oxygenates and give significant amounts of partial oxidation products. Moreover they give rise to CO in excess of CO2. The sample higher in V is more active. Mn–TiO2 is definitely more active in oxidation of hydrocarbons and oxygenates, and produces, at total conversion, CO2 as the only detectable product.

V–W–Ti catalysts are very active in dehydrochlorination of the two 2-chloropropane isomers and retain the same oxidation activity also in the presence of HCl. On the contrary, Mn-based catalysts in the presence of chlorocarbons convert into dehydrochlorination catalysts but lose their catalytic activity in oxidation. V–W–Ti catalysts can be used in Cl-containing atmospheres while Mn–TiO2 can be proposed for DeNOx and VOC abatement in Cl-free atmospheres such as for diesel engine exhaust gas purification.  相似文献   


15.
采用等体积浸渍法制备了以TiO_2-Al_2O_3为载体,Ni、W为活性金属组分的加氢脱硫催化剂,考察了稀土金属镧(La)、乙二胺四乙酸(EDTA)改性以及La-EDTA组合改性对催化剂结构和加氢脱硫性能的影响。通过X射线衍射、N2吸附-脱附、H2-程序升温还原和扫描电子显微镜对催化剂进行表征分析。结果表明,La和EDTA均可改善活性组分与载体间的相互作用,增加了Ni-W-S活性相的数量,有利于金属组分的还原;同时能够丰富催化剂孔道,抑制催化剂表面金属离子聚集,得到更好的孔结构、更高的活性相分散度。La或EDTA以及两者同时改性后的催化剂噻吩硫脱除率均明显高于未改性催化剂,其中Ni-W-La-E催化剂上噻吩转化率为99.7%。  相似文献   

16.
Alumina-silica binary mixed oxide support is used to prepare catalysts for hydrotreating of Maya heavy crude. Support is prepared by urea hydrolysis. Sequential incipient wetness and co-impregnation techniques are employed for preparation of catalysts. Ammonium heptamolybdenum is used as precursor of MoO3. Catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR) and the pore size distribution. Hydrodemetallation (HDM), hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and asphaltene conversion (HDAsp) reactions are studied on these catalysts. One reference catalyst is also taken for comparison. Coke and metals depositions on spent catalysts are measured. The catalyst deactivation rate is also studied. The X-ray diffraction (XRD) results reveal that molybdenum atoms are well dispersed into CoMo catalyst, whereas MoO3 crystalline phases are found in PCoMo and PNiMo catalysts. TPR reduction profiles are different for different catalysts. The laboratory made catalyst is reduced at one temperature, whereas the reference catalyst shows two reduction profiles. The reference catalyst shows the highest activities among four catalysts. The highest HDM and HDAsp activities of the reference catalyst may be due to its bigger pore diameter. The presence of TiO2 in the reference catalyst enhances HDS and HDN activities. The CoMo catalyst shows higher activities than those of PCoMo and PNiMo catalysts. The presence of crystalline MoO3 causes for lower activities of catalysts PCoMo and PNiMo.  相似文献   

17.
In the present study TiO2/clay composites were synthesized by dispersion of TiO2 on the surfaces of a natural montmorillonite and a synthetic hectorite in order to increase the sorption ability of TiO2 and therefore its photocatalytic action. Six materials with different loading in TiO2 (15, 30 and 55 wt%) were prepared and characterized by several analytical techniques including XRD, BET and SEM analysis. The synthetic procedure allows the development of delaminated layers for hectorite–TiO2 samples, while in the case of montmorillonite–TiO2 composites we have the formation of a more lamellar-like aggregation. It was found that, the greater the percentage of TiO2, the greater the pore volume and the specific surface area of the montmorillonite–TiO2 samples. On the contrary, in the case of hectorite–TiO2 samples, as the content of TiO2 increases, the surface area and pore volume decreases. The photocatalytic efficiency of the nanocomposite catalysts was evaluated using a chloroacetanilide herbicide (dimethachlor) in water as model compound. The primary degradation of dimethachlor followed pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. All supported catalysts exhibit good photodegradation efficiency and their overall removal efficiency per mass of TiO2 was better than that of bare TiO2 produced by the sol–gel method. In conclusion, together with their good sedimentation ability the composite materials could be considered as a promising alternative for the removal of organic water contaminants.  相似文献   

18.
The present paper gives a detailed review of the different studies under investigation in our laboratory concerning the use of TiO2 and TiO2–Al2O3 composites prepared by chemical vapor deposition (CVD) as support for sulfide catalysts in the HDS of dibenzothiophene (DBT) derivatives. The supports investigated here are: TiO2 (from Degussa, 50 m2/g), Al2O3 (Nikki, 186 m2/g) and TiO2–Al2O3 supports prepared by CVD of TiCl4 on alumina. Using several characterization techniques, we have demonstrated that the support composite presents a high dispersion of TiO2 over γ-Al2O3 without forming precipitates up to ca. 11 wt.% loading. Moreover, the textural properties of the support composite are comparable to those of alumina. XPS investigations of Mo and NiMo catalysts supported on the different carriers show that Mo-oxide species exhibit a higher degree of sulfidation on the surface of TiO2 and TiO2–Al2O3 than on alumina. The HDS tests of 4,6-DMDBT under mild operating conditions (573 K, 3 MPa) show that sulfide catalysts supported on the composite support (ca. 11 wt.%) are more active than those supported on to TiO2 or Al2O3. This higher HDS catalytic activity is attributed to the promotion of the hydrodesulfurization pathway, whereby the pre-hydrogenation of one of the aromatic rings adjacent to the thiophenic one may reduce the steric hindrance caused by the two methyl groups adjacent to the sulfur atom during the C–S bond cleavage.  相似文献   

19.
The influence of different metal oxide supports (i.e. ZrO2, ThO2, UO2, TiO2 and SiO2) on the performance of Ni- and/or Co-containing catalysts [Ni and/or Co/MO2 mole ratio (where M=Zr, Th, U, Ti or Si)=1.0] in the oxidative methane-to-syngas conversion at very low contact time (GHSV=5.2×105 cm3 g−1 h−1 at STP) was investigated. The nickel-containing ZrO2, ThO2 and UO2 catalysts (with or without pre-reduction by hydrogen at 500°C) showed good performance in the process; the order of their performance is NiO–ThO2>NiO–UO2>NiO–ZrO2. The NiO–TiO2 showed appreciable catalytic activity only after its reduction at 800°C. However, this catalyst and the NiO–SiO2 catalyst showed poor performance in the process. These two catalysts are also deactivated very fast, mostly because of sintering of Ni and/or formation of catalytically inactive binary metal oxide phases by solid–solid reaction at the high catalyst calcination and/or catalytic reaction temperature. Although the Ni-containing ThO2, UO2 and ZrO2 catalysts showed good performance, carbon deposition on them during the process is fast. However, because of the addition of cobalt to these catalysts (with Co/Ni=1.0), the rate of carbon deposition on them in the process is drastically reduced. This Co addition however resulted in a significant decrease in both the conversion and selectivity; the decrease in the selectivity was small.  相似文献   

20.
Three different supports were prepared with distinct magnesia–alumina ratio x = MgO/(MgO + Al2O3) = 0.01, 0.1 and 0.5. Synthesized supports were impregnated with Co and Mo salts by the incipient wetness method along with 1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid (CyDTA) as chelating agent. Catalysts were characterized by BET surface area, Raman spectroscopy, SEM-EDX and HRTEM (STEM) spectroscopy techniques. The catalysts were evaluated for the thiophene hydrodesulfurization reaction and its activity results are discussed in terms of using chelating agent during the preparation of catalyst. A comparison of the activity between uncalcined and calcined catalysts was made and a higher activity was obtained with calcined MgO–Al2O3 supported catalysts. Two different MgO containing calcined catalysts were tested at micro-plant with industrial feedstocks of heavy Maya crude oil. The effect of support composition was observed for hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodeasphaltenization (HDAs) and hydrodenitrogenation (HDN) reactions, which were reported at temperature of 380 °C, pressure of 7 MPa and space-velocity of 1.0 h−1 during 204 h of time-on-stream (TOS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号