首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO additions to BaTiO3 have been studied in order to determine the role of this dopant on sintering and microstructure development. As a consequence of a better initial dopant distribution, samples doped with 0.1 wt% zinc stearate show homogeneous fine-grained microstructure, while a doping level of 0.5 wt% solid ZnO is necessary to reach the same effect. When solid ZnO is used as the dopant precursor, ZnO is redistributed among the BaTiO3 particles during heating. Since no liquid formation has been detected for temperatures below 1400°C in the system BaTiO3-ZnO, it is proposed that dopant redistribution takes place by vapor-phase transport and grain boundary diffusion. Shrinkage and porosimetry measurements have shown that grain growth is inhibited during the first step of sintering for the doped samples. STEM-EDX analysis revealed that solid solubility of ZnO into the BaTiO3 lattice is very low, being strongly segregated at the grain boundaries. Grain growth control is attributed to a decrease in grain boundary mobility due to solute drag. Because of its effectiveness in controlling grain growth, ZnO appears to be an attractive additive for BaTiO3 dielectrics.  相似文献   

2.
Sintering of Zinc Oxide Doped with Antimony Oxide and Bismuth Oxide   总被引:1,自引:0,他引:1  
The phase change, densification, and microstructure development of ZnO doped with both Bi2O3 and Sb2O3 are studied to better understand the sintering behavior of ZnO varistors. The densification behavior is related to the formation of pyrochlore and liquid phases; the densification is retarded by the former and promoted by the latter. The pyrochlore phase, whose composition is Bi3/2ZnSb3/2O7, appears below 700°C. The formation temperature of the liquid phase depends on the Sb/Bi ratio: about 750°C for Sb/Bi < 1 by the eutectic melting in the system ZnO—Bi2O3, and about 1000°C for Sb/Bi > 1 by the reaction of the pyrochlore phase with ZnO. Hence, the densification rate is determined virtually by the Sb/Bi ratio and not by the total amount of additives. The microstructure depends on the sintering temperature. Sintering at 1000°C forms intragrain pyrochlore particles in ZnO grains as well as intergranular layers, but the intragrain particles disappear at 1200°C by the increased amount of liquid phase, which enhances the mobility of the solid second phase.  相似文献   

3.
Al2O3/5-vol%-SiC nanocomposites have been fabricated by using pressureless sintering with MgO and/or Y2O3 sintering aids and post-hot isostatic pressing (HIPing), which circumvents the limitations of hot pressing. Al2O3/SiC nanocomposites that have been doped with 0.1 wt% MgO and 0.1 wt% MgO + 0.1 wt% Y2O3 show an increased sintering density and a homogeneous microstructure, as well as a high fracture strength (1 GPa) after HIPing. In contrast, using Y2O3 as a dopant has a negative impact on the microstructure and the fracture strength. The results suggest that MgO, as a sintering additive, has a key role in improving the densification and controlling the microstructure of Al2O3/SiC nanocomposites.  相似文献   

4.
The effects of ZnO additive on the microstructure, phase formation, and electrical conduction of yttrium-doped strontium zirconate were investigated. The sintering temperature of SrZr0.9Y0.1O2.95 can be lowered to 1350°C by addition of ZnO. The electrical conduction is found to be strongly correlated with the ZnO contents. When the ZnO content is <5 mol%, the electrical conductivity increased with an increase in the ZnO contents. Electromotive force measurements under fuel cell conditions indicated a pure ionic conduction over this range of ZnO contents. However, it had a detrimental effect on the electrical conduction when the ZnO content was more than 6 mol%. The main reason for this is discussed according to the defect chemistry and microstructure.  相似文献   

5.
Dielectric ceramics of Zr0.8Sn0.2TiO4 containing La2O3 and ZnO as sintering aids were prepared and investigated for microstructure and microwave dielectric properties. Low-level doping with La2O3 and ZnO (up to 0.30 wt%) is good for densification and dielectric properties. These additives do not affect the dielectric constant and the temperature coefficient. Dielectric losses increase significantly at additive levels higher than 0.15 wt%. The combined additives La2O3 and ZnO act as grain growth enhancers. With 0.15 wt% additives, a ceramic having a dielectric constant, a quality factor, and a temperature coefficient of frequency at 4.2 GHz of 37.6, 12 800, and –2.9 ppm/°C, respectively, was obtained. The quality factor was considerably improved by prolonged sintering.  相似文献   

6.
Hard piezoelectrics with high dielectric and piezoelectric constants are used for high-power applications. However, the sintering temperature of these ceramics is high, around 1200°C, restricting the usage of cheap base metal electrodes in fabrication of multi-layer components. This study investigates the effect of CuO and ZnO on the sintering temperature of a hard piezoelectric, APC 841, which is a MnO2- and Nb2O5-modified PZT. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered at ≤950°C were lower than the desired values. The addition of ZnO resulted in a significant improvement in the piezoelectric properties. This enhancement was attributed to the formation of a homogeneous microstructure with large grains. The APC 841+0.2 wt% CuO+1.1 wt% ZnO ceramics sintered at 950°C showed excellent piezoelectric and dielectric properties with values of k p=0.532, Q m=750, d 33=351 pC/N, ɛ33o=1337, and T c=280°C.  相似文献   

7.
The effect of sintering temperature on the microstructure and crystal phases of the intergranular praseodymium oxides in ZnO varistor ceramics was investigated using transmission electron microscopy and high-resolution electron microscopy. The ZnO grains were three-dimensionally separated from the intergranular praseodymium oxides. On the basis of microdiffraction analyses of the intergranular layer, the phase transformation from fcc-Pr6O11 into hcp-Pr2O3 was found when the sintering temperature increased from 1300° to 1350°C. The defect reaction equation and the decrease of donor concentration with increasing sintering temperature can verify the certainty of phase transition during the liquid-phase sintering observed by transmission elecron microscopy. Additionally, on the basis of the small variations of the breakdown voltage per grain boundary, the number of active grain boundaries is not a dominant factor for the donor concentration dependence on the sintering temperature.  相似文献   

8.
The modification of the densification behavior and the grain-growth characteristics of the microwave-sintered ZnO materials, caused by the incorporation of V2O5 additives, have been systematically studied. Generally, the addition of V2O5 markedly enhances the densification rate, such that a density as high as 97.9% of the theoretical density and a grain size as large as 10 µm can be attained for a sintering temperature as low as 800°C and a soaking time as short as 10 min. Increasing the sintering temperature or soaking time does not significantly change the sintered density of the ZnO-V2O5 materials but it does monotonously increase their grain size. Varying the proportion of V2O5 in the range of 0.2-1.0 mol% does not pronouncedly modify such behavior. The leakage current density ( J L) of these high-density and uniform-granular-structure samples is still large, which is amended by the incorporation of 0.3 mol% of Mn3O4 in the ZnO materials, in addition to 0.5 mol% of the V2O5 additives. Samples that are obtained using such a method possess good nonohmic characteristics (α= 23.5) and a low leakage current density ( J L= 2.4 10-6 A/cm2).  相似文献   

9.
ZnO varistors with different amounts of ZnF2 from 0.00 to 0.80 mol% were prepared using a solid-state reaction technique, to explore the potential application of ZnO. The F-doping effects on the microstructure and electrical properties of ZnO-based varistors were investigated. The average grain size of ZnO increased from 4.93 to 6.48 μm as the ZnF2 content increased. Experimental results showed that as the ZnF2 content increased, the breakdown voltage decreased from 617 to 367 V/mm, and the nonlinear coefficient did not change much. However, a slight increase was observed in the leakage current. Besides, when the ZnF2 content increased, the donor concentration increased from 0.669 × 1018 to 8.720 × 1018 cm−3. The study indicated that ZnF2 played a similar role as sintering aids to promote grain growth and the substitutional F atoms in the bulk served as a donor to increase the donor concentration.  相似文献   

10.
The relationships between the microstructure of sintered YBa2Cu3O6+ x superconductors and processing variables (sintering time, sintering temperature, and oxygen partial pressure) were examined. Large-grained microstructures were obtained in 100 kPa oxygen sintering atmospheres, while fine-grained microstructures were obtained in 2 kPa oxygen. The formation of liquid phases below the peritectic decomposition temperature of YBa2Cu3O6+ x was found to have an effect on both the microstructure (as observed by optical and transmission electron microscopy) and the transport critical current density ( Jc ). The critical current density was found to be highest for sintering below the lowest invariant point, which is a function of the oxygen partial pressure. However, over the range of conditions examined here, there does not appear to be any correlation between microstructural features, such as average grain size and aspect ratio, and the transport Jc .  相似文献   

11.
The electrical resistivity of ZnO doped with Al2O3 was measured in air and under reduced pressure (∼0.5 mm Hg) in the range from 30° to 680°C as a function of the degree of sintering. The data obtained were explained in terms of the effects of the microstructure of the sintered body and the chemisorbed oxygen. There are two mechanisms of electrical conduction involved, only one of which is affected by the microstructure.  相似文献   

12.
The effects of adding small quantities of SnO2 to the basic ZnO–Bi2O3 varistor composition were studied in terms of phase reactions, microstructural development, and the formation of inversion boundaries. Scanning and transmission electron microscopy studies showed that the inversion boundaries, triggered by the addition of SnO2, cause anisotropic grain growth in the early stages of sintering. ZnO grains that include inversion boundaries grow exaggeratedly, at the expense of normal grains, until they dominate the microstructure. Higher additions of SnO2 lead to an increase in number of grains with inversion boundaries and to a more fine-grained microstructure. The increasing amount of secondary phases is also related to a higher level of SnO2 addition; however, the influence of these phases on ZnO grain growth is subordinate to the role of inversion boundaries.  相似文献   

13.
Grain growth of ZnO during the liquid-phase sintering of binary ZnO–Bi2O3 ceramics has been studied for Bi2O3 contents from 3 to 12 wt% and sintering from 900° to 1400°C. The results are considered in combination with previously published studies of ZnO grain growth in the ZnO–Bi2O3 system. For the Bi2O3 contents of the present study, the rate of ZnO grain growth is found to decrease with increasing Bi2O3. Activation analysis, when combined with the results of similar analyses of the previous studies, reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-Bi2O3-content region of nearly constant activation energy values of about 150 kJ/mol, further Bi2O3 additions cause an increase of the activation energy to about 270 kJ/mol. consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of Bi2O3 changes from one of a phase-boundary reaction at low Bi2O3 levels to one of diffusion through the liquid phase at about the 5 to 6 wt% Bi2O3 level and above.  相似文献   

14.
The effects of the oxide additives MnO2, Co3O4, and Sb2O3, commonly incorporated in commercial Bi2O3-doped ZnO varistors, on the current–voltage characteristics and microstructure of 0.25 mol% V2O5-doped ZnO varistors have been studied. MnO2 is the most significant additive in terms of its effects on varistor performance. Varistor performance can also be improved by increasing the V2O5 content to 0.5 mol% in a ZnO ceramic containing 1 mol% MnO2. Further increases in the V2O5 content of 1 mol% MnO2-doped material cause a deterioration in varistor behavior. The microstructure of the samples consists mainly of ZnO grains with zinc vanadates as the minority secondary phases. Additional spinel phase is formed when Sb2O3 is incorporated.  相似文献   

15.
We present a rare-earth-doped ZnO ceramic with nonohmic electrical properties. Analysis of the microstructure and composition indicates that the ceramic is composed of the main phase of ZnO and the second phase of rare-earth oxides (e.g., Dy2O3, Pr6O11, Pr2O3). The average grain size is markedly increased from 3 to 18 μm, with an increase in the sintering temperature from 1150° to 1350°C. The corresponding varistor voltage and nonlinear coefficient decrease from 1014 to 578 V/mm, and from 15.8 to 6.8, respectively. The resistivity of grain and grain boundary evaluated by the complex impedance spectrum indicates that the resistivity of the grain is approximately constant (∼103Ω), and the resistivity of the grain boundary decreases. The relative dielectric permittivity of the sintered ceramic samples is much larger than that of pure ZnO ceramic, which should be ascribed to the internal boundary layer capacitance effect.  相似文献   

16.
Effect of Weight Loss on Liquid-Phase-Sintered Silicon Carbide   总被引:3,自引:0,他引:3  
The evaporation of silicon carbide (SiC) ceramics during sintering has been studied by thermogravimetry in a graphite furnace filled with argon. The SiC powder compacts contained 7.5 wt% eutectic composition of Y2O3–Al2O3 to promote liquid-phase sintering. A weight loss of 1–11 wt% was observed during sintering, depending on the sintering temperature and sintering time. The weight loss severely influenced the final density and the microstructure of the SiC ceramics. Particularly, the oxide sintering aids, which were homogeneously distributed in the green ceramics, were observed to segregate and form particular patterns that were dependent on the temperature, sintering time, and the total weight loss. Possible heterogeneous reactions evolving volatile species have been discussed in relation to the experimental observations.  相似文献   

17.
Ceramic varistors based on ZnO with lead zinc borosilicate glass instead of Bi2O3 were prepared. The effect of sintering conditions on the electrical properties was studied by sintering samples at various temperatures and cooling them at different rates. The sample sintered at 1250°C for 1 h, then furnace cooled, possessed the best electrical properties, as characterized by the highest nonlinear coefficient, lowest leakage current, and lowest degradation. The microstructure and crystal structure of the glass phase of ZnO–glass varistors were examined by means of scanning electron microscopy, transmission electron microscopy, and powder X-ray diffractometry. The glass phase was originally amorphous, but crystallized as an intergranular layer in the sintered and furnace-cooled samples. This crystallized phase was a zinc borate phase (5ZnO·2B2O3), which was identified by X-ray diffractometry, transmission electron microscopy, and Auger electron spectroscopy. The zinc borate phase at the grain boundary of ZnO–glass samples enhanced the nonohmic characteristics of the ceramic varistors.  相似文献   

18.
M-doped zinc oxide (ZnO) (M=Al and/or Ni) thermoelectric materials were fully densified at a temperature lower than 1000°C using a spark plasma sintering technique and their microstructural evolution and thermoelectric characteristics were investigated. The addition of Al2O3 reduced the surface evaporation of pure ZnO and suppressed grain growth by the formation of a secondary phase. The addition of NiO promoted the formation of a solid solution with the ZnO crystal structure and caused severe grain growth. The co-addition of Al2O3 and NiO produced a homogeneous microstructure with a good grain boundary distribution. The microstructural characteristics induced by the co-addition of Al2O3 and NiO have a major role in increasing the electrical conductivity and decreasing the thermal conductivity, resulting from an increase in carrier concentration and the phonon scattering effect, respectively, and therefore improving the thermoelectric properties. The ZnO specimen, which was sintered at 1000°C with the co-addition of Al2O3 and NiO, exhibited a ZT value of 0.6 × 10−3 K−1, electrical conductivity of 1.7 × 10−4Ω−1·m−1, the thermal conductivity of 5.16 W·(m·K)−1, and Seebeck coefficient of −425.4 μV/K at 900°C. The ZT value obtained respects the 30% increase compared with the previously reported value, 0.4 × 10−3 K−1, in the literature.  相似文献   

19.
Densification and microstructure de velopment in Bi2O3-doped ZnO have been studied with a special emphasis on the effect of the Bi2O3 content. A small amount of Bi2O3 in ZnO (0.1 mol%) retarded densification, but the addition of Bi2O3 to more than 0.5 mol% promoted densification by the formation of a liquid phase above the eutectic temperature (∼740°C). The liquid phase increased grain-boundary mobility, which was responsible for the formation of intragrain pores and the decrease in the sintered density. The increase in the Bi2O3 content increased the probability of the formation of skeleton structure, which reduced the grain growth rate and the sintered density.  相似文献   

20.
The effects of various liquid-phase sintering aids on (Pb0.6SrO0.4)TiO3 ceramics have been investigated. The relationships between electrical properties and microstructures have been scrutinized. It has been found that, among the sintering aids studied, only SiO2 exhibits a significant effect on the grain growth of (Pb0.6SrO4)TiO3. The optimum firing profiles for sound microstructure and good electrical properties of (Pb0.6SrO0.4)TiO3+ 5.0 mol% SiO2 have been established. The V-shaped electrical behavior is prominent, and a PTCR jump of about 102.9 is observed. The formation of cation vacancies may increase the resistivity of the over-fired specimens. Various milling methods to pulverize the calcined powder and the optimum amount of packing protection powder during sintering are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号