共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
针对传统平均经验模态分解(EEMD)中添加白噪声参数需依据人工经验设定的缺陷,在研究引起模态混叠原因的基础上提出一种自适应EEMD方法。该方法可以根据信号本身特性,自适应设定白噪声标准差以达到最优分解效果。首先使用奇异值差分谱法对信号进行分解、重构,然后利用提取得到的高频冲击分量和噪声分量的复合分量对所需添加白噪声标准差大小进行自适应整定,最后通过自适应EEMD将信号分解为一系列本征模态函数(IMF)。分形维数对信号特征评价性能良好,所以用分形维数来识别不同类型振动信号是十分有效的。本文提出分层分形维数方法,可提高信号识别、分类效率和准确度。使用该复合方法处理仿真信号、风电机组传动系统实验平台信号均取得良好效果,证明了本文所提方法的有效性。 相似文献
3.
针对风电机组齿轮箱超温出现的故障问题,提出了基于改进参数优化机器学习算法的风电机组齿轮箱故障预警模型。
首先,通过随机森林袋外估计确定特征变量,并采用滑动平滑滤波对输入变量进行滤波处理。 其次,构建灰狼算法优化支持向
量回归模型,根据最优模型输出的偏差值确定状态识别指标。 最后,通过时移滑动窗口设置阈值范围,当状态识别指标超出阈
值范围之外时立即报警。 实验结果表明,该模型能提前 87 min 对风电机组齿轮箱温度异常发出故障预警,并且预警效果优于
距离相关系数-GWO-SVR 模型、Pearson-GWO-SVR 模型和 OOB-SVR 模型。 相似文献
4.
通过对风机传动系统中齿轮故障进行模拟试验,构建结构风险最优的支持向量机(SVM)网络,对采集到的电磁速度信号进行快速傅里叶分解,选取高频段的频谱特性作为分量进行样本化学习,完成对齿轮故障样本的训练,使SVM具备分类功能.最后,采用SVM对齿轮箱试验台齿轮故障进行诊断分类识别,取得较好的效果,说明齿轮故障信号高频特性所包含故障信息在整个频谱中的有效性以及SVM作为一种故障诊断方法的实用性. 相似文献
5.
基于粗糙集和支持向量机的水电机组振动故障诊断 总被引:8,自引:0,他引:8
提出应用粗糙集和支持向量机水电机组振动的故障诊断模型.运用粗糙集理论对水电机组振动信号的属性特征进行预处理,在约简去除其冗余属性后得到决策表,将决策表作为支持向量机的学习样本,通过训练,使构建的支持向量机多分类器能够反映属性特征和故障类型的映射关系,从而达到故障诊断的目的.测试结果表明,与常规方法相比,应用粗糙集和支持向量机相结合的方法进行故障诊断具有简单有效、诊断速度快和良好的鲁棒性等优点,是一种有效的诊断方法. 相似文献
6.
针对现有的大多数深度迁移学习方法只能在目标转速下工作,而且在模型的训练中总是需要目标域样本的问题,研究风电机组行星齿轮箱在变工况下的故障诊断方法,设计了应用于变工况下行星齿轮箱故障诊断的深度残差半监督域泛化网络,将诊断模型推广到未知转速的故障诊断任务中。首先对振动信号进行Fast Kurtogram时频变换,生成图像并构造样本集;其次模拟实际情况,以含标签源域样本集和无标签源域样本集为输入,使用深度残差网络提取深层故障特征,并引入对抗博弈机制和基于伪标签的半监督学习方法对网络进行训练;最后根据训练后的网络搭建了域泛化故障诊断模型,利用行星齿轮箱故障诊断实验进行评估。实验结果表明,所设计的网络可以有效利用定速样本实现对未知转速样本和变速样本的故障识别,对目标域的平均识别率达到95.24%。 相似文献
7.
基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断研究 总被引:1,自引:0,他引:1
应用最小二乘支持向量机和信息融合技术对水电机组的振动故障进行诊断。采用对水电机组振动信号的频域特征和时域振幅特征作为特征向量的学习样本,通过训练,使最小二乘支持向量机能够反映特征向量和故障类型的映射关系,在完成局部诊断后再实现决策信息融合,从而达到故障诊断的目的。以水电机组振动故障诊断为例,进行了应用检验。结果表明,与常规方法相比,最小二乘支持向量机和信息融合技术相结合的方法具有快速有效等优点,适合水电机组振动故障的诊断。 相似文献
8.
电弧故障是引起电气火灾的重要原因之一。针对串联电弧故障随机性、多样性和隐蔽性等带来的诊断难题,为提高故障诊断率,设计了一种新的串联电弧故障诊断方法。借助高频电流传感器和高速数据采集系统采集串联电弧故障电流,通过分形维数定量衡量高频电流信号的混沌特性,以便提取串联电弧故障的特征信息,以盒维数和关联维数构造串联电弧故障的特征向量,采用最小二乘支持向量机对电流信号的特征向量进行分类,实现了线路正常与串联电弧故障状态的正确区分。运用所建立的实验平台验证了整个诊断方法的有效性,实验结果表明,串联电弧故障诊断率达到98%以上,所设计的诊断方法具有良好的泛化能力。 相似文献
9.
基于小波包分析和支持向量机的水电机组振动故障诊断研究 总被引:13,自引:0,他引:13
提出了一种利用小波包分析提取水电机组的振动故障特征和基于支持向量机的水电机组振动故障诊断方法。以二值分类为基础,构建了基于支持向量机的多值分类器。先对水电机组的振动信号进行频谱分析,提取该信号在频率域的特征量,将频谱特征向量作为学习样本,通过训练,使分类器能够建立频谱特征向量和故障类型的映射关系,从而达到故障诊断的目的,并以水电机组振动多故障分类为例,进行了应用检验。结果表明,与常规方法相比,该方法简单有效、并具有很好的分类能力和良好的鲁棒性,可以满足在线故障诊断的要求,适合水电机组振动故障的诊断。该方法为水电机组故障诊断向智能化发展提供了新的途径。 相似文献
10.
基于粗糙集理论和支持向量机的变压器故障诊断 总被引:3,自引:0,他引:3
将粗糙集约简与支持向量机分类相结合,建立一个基于粗糙集和支持向量机的变压器故障诊断模型.该模型将油色谱数据诊断结果与电气试验数据相结合,通过粗糙集信息熵进行约简,建立了故障与信息的映射关系,再通过支持向量机分类器对其进行分类,使得变压器的故障分析到初步的部位.经实例分析和验证,该模型能对变压器进行初步定位,并有较高的正判率. 相似文献
11.
以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解(variational mode decomposition, VMD)及粒子群算法(particle swarm optimization, PSO)优化支持向量机(support vector machine, SVM)的故障诊断方法。首先,对信号进行VMD分解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入PSO优化SVM的关键参数,将提取的特征向量输入PSO-SVM进行训练和识别。将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。 相似文献
12.
针对风电机组SCADA监测数据的非线性、高冗余等特点,提出一种基于受限玻尔兹曼机(Restricted BoltzmannMachine,RBM)和支持向量机(SupportVectorMachine,SVM)的风电机组叶片开裂故障预测方法。利用RBM优异的特征学习能力,将其作为特征提取器来获得风电机组SCADA数据中表达能力更强的数据特征。将RBM的输出作为SVM的输入,构建RBM+SVM组合预测模型。利用训练集、验证集进行预测模型构建和参数微调。为验证提出模型的有效性,将其预测结果与RBM+Logistic回归、SVM和Logistic回归的预测结果进行对比。实验表明,RBM+SVM的预测准确率为93.08%,与三组对比模型相比具有明显的优势。研究结果可为实际风电机组叶片开裂故障预测提供重要参考。 相似文献
13.
A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network 下载免费PDF全文
The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability.
Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of
large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and
the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be
conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some
features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained
in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer
learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a
modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration
signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network
is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of
transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the
effectiveness and the reliability of both the dynamic model and the proposed method. 相似文献
14.
Qu Yanyun Zheng Nanning Li Cuihua 《Frontiers of Electrical and Electronic Engineering in China》2007,2(4):444-448
This paper proposes a novel airport detection method, which integrates the texture features and shape features of the airport.
Eight texture features, such as the mean of the region, the deviation of the region, the smoothness of the region, the skewness
of a histogram, the uniformity of the region, the randomness of the region, the mean of the gradient image and the deviation
of the gradient image, are used to represent the features of the region. In this method, first the long lines are detected
and the regions where the lines locate are segmented. Second, support vector machine (SVM) based on Gaussian kernel is used
as a classifier which discriminates the runway from other candidate regions. Experimental results show that the error rate
of the proposed method is lower than those of conventional methods which detect airport only by the shape feature of runway.
The detection accuracy of the proposed method is nearly ten times higher than that of Liu’s methods, and the method has favorable
speed for a real-time system.
__________
Translated from Journal of Xi’an Jiaotong University, 2006, 40(6): 709–713 [译自: 西安交通大学学报] 相似文献
15.
行星齿轮箱是风电机组中的重要部件,对风电机组的安全可靠运行具有重要意义。为此,提出一种基于深度特征融合网络的行星齿轮箱故障诊断方法,用于实现变速工况、样本不足和强噪声场景下的故障诊断。首先将原始信号扩展到多个特征域。其次利用多维堆栈稀疏自编码器提取各域特征。最后针对传统Softmax分类器对融合信息分类能力不足的问题,提出基于竞争粒子群算法优化的回声状态网络进行特征融合并输出诊断结果。经多场景不同故障诊断方法对比实验,所提方法在行星齿轮箱变速工况下分类效果良好,并对训练样本的减少和外界噪声有很强的鲁棒性。 相似文献
16.
针对风力发电厂运行可靠性问题,提出风电机组模糊故障模式、影响与危害性分析(Failure Modes, Effect and Criticality Analysis, FMECA)评价模型。基于金风天翼风电场全年运行数据的统计分析,对风电机组故障评价引进模糊评价理论进行改进。通过建立FMEA(Failure Mode and Effect Analysis, FMEA)故障表,绘制危害性矩阵图并建立因素集、评价集和权重集,进行模糊评价分析。根据评价结果,对各故障的危害度进行重新排序整理。该研究对进一步提高风电现场运维效率、降低运维成本具有重要的意义。 相似文献
17.
针对变压器结构的复杂性和故障机理的多样性,提出一种基于模糊理论和支持向量机的变压器故障诊断方法.该方法首先采用模糊理论对故障样本数据进行预处理,提取故障特征,再用支持向量机方法进行故障分类,通过采用一对多(1-a-r)的方法实现多目标分类,得出诊断结果.针对支持向量机参数不易确定的问题,采用多层动态自适应算法与k-折交叉验证方法结合对参数进行优化分析.故障诊断实例测试结果显示,该方法不仅克服了传统比值法中编码缺失、编码边界过于绝对的问题,诊断结果具有更高的准确率,而且也具有较好的适用性. 相似文献
18.
阐述了支持向量机与最小二乘支持向量机的特点,设计了基于最小二乘支持向量机的控制器,该控制器构成的系统学习与泛化能力强、抗干扰效果好,并利用垃圾焚烧炉的估计模型进行了仿真.仿真结果表明,该方法抗干扰效果好,适应性强. 相似文献
19.
针对目前随钻测量的需要,提出了一种基于支持向量机预测的随钻测量方法.与传统随钻测量方法相比该方法能够预测提示井下钻头需要待钻进的地理方位位置,为司钻人员下一步的施工钻进提供方位信息.通过现场试验数据测试,结果表明,该方法能够预测提示井下定向钻进过程中的定向方位信息,大幅度节省钻进施工时间. 相似文献