首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of switching-mode power supply containing no inductors or transformers is proposed. The controlled transfer of energy from a unregulated DC source to a regulated output voltage is realized through a switched-capacitor (SC) circuit. A duty-cycle control is used; the driving signals of the transistors in the SC circuit are determined by the feedback circuit. The absence of magnetic devices makes possible the realization of power converters of small size, low weight and high power density, able to be manufactured in IC technology. High efficiency, small output voltage ripple and good regulation for large changes in the input voltage and/or load values are other positive features of the new type of DC-to-DC power converter. The input-to-output voltage conversion ratio is flexible; the same converter structure can provide a large range of constant desired values of the output voltage for a given input voltage, by predetermining the steady-state conversion ratio. The frequency response shows good stability of the designed converter. The experimental results obtained by using a prototype of a step-down SC-based DC-to-DC converter confirmed the theoretical expectations and the computer simulation results.<>  相似文献   

2.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

3.
A single-phase high-frequency transformer-isolated soft-switching single-stage ac-to-dc converter with low-line-current distortion is presented. The circuit configuration is obtained by integrating two discontinuous current mode (DCM) boost converters with a DCM full-bridge buck converter. The zero-voltage switching for the top switches is achieved automatically, whereas bottom switches are aided by zero-voltage transition circuits. The output voltage is regulated by duty-cycle control at constant switching frequency. The intervals of operation and steady-state analysis are presented. A systematic design procedure is presented with a 1-kW converter design example. PSPICE simulation and experimental results obtained from a 1-kW laboratory prototype are presented for a wide variation in line and load conditions.  相似文献   

4.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

5.
一种反激式LED恒流驱动电路的设计与实现   总被引:1,自引:1,他引:0  
设计了一种输出功率达120W的反激式变换LED恒流驱动电路,其输出电压范围为33~37V,可为120只功率为1W的LED管采用10串12并混联方式组成的LED阵列提供驱动电流。对其功率因数校正电路、反激式变换电路、恒流控制电路进行了设计和试制,性能测试表明,其输出恒流效果较好,电流稳定度约2.7%,输出电压纹波低,可用于恒流驱动混联方式组成的多只LED阵列。  相似文献   

6.
A two-stage, two-wire TRIAC dimmable electronic ballast for fluorescent lamps is presented in this paper. It is constructed by using a flyback converter as the input power factor corrector to supply a half-bridge series-resonant parallel-loaded inverter to ballast the lamp. The flyback converter is operated in discontinuous conduction mode so that the filtered input current profile is the same as the TRIAC-controlled voltage waveform. The switches in the inverter are switched at a constant frequency slightly higher than the resonant frequency of the resonant tank. Based on the constant average input current characteristics of the inverter, the dimming operation is simply achieved by pulsewidth modulation control of the magnitude of the flyback converter output voltage. No synchronization network is required between the input and output stages. In addition, a linear power equalization scheme is developed so that the dc-link voltage (and hence the lamp power) is in a linear relationship with the firing angle of the TRIAC. The average output voltage of the dimmer controls the equalized flyback converter output voltage. Modeling, analysis, and design of the ballast will be described. A prototype was implemented to verify the experimental measurements with the theoretical predictions.  相似文献   

7.
对一种车用恒流/恒压模式的四开关Buck-Boost变换器的控制策略进行了研究。在输入输出电压接近时引入Buck-Boost模式,从而在不同输入输出电压大小关系下,通过检测功率管占空比大小,实现Buck模式、Boost模式和Buck-Boost模式之间的平滑切换,提高了系统的稳定性。通过设计最大值选择电路,使变换器在充电应用中自动从恒流模式切换到恒压模式,模式切换平滑稳定。仿真结果表明,在24 V输出电压下,变换器从Buck模式切换到Buck-Boost模式时,输出电压下冲为9.2 mV,变换器从Boost模式切换到Buck-Boost模式时,输出电压下冲为92 mV。变换器在Buck模式与Boost模式下均能实现恒流/恒压模式的自动平滑切换。  相似文献   

8.
董清臣  范铭 《电子科技》2015,28(10):166
针对DC-DC升压器存在效率低,纹波电压较大,输出电压不稳定等问题,文中开发和设计了一种具有恒定输出电压的DC-DC升压转换器的方法。通过升压电路和电压反馈技术,将波动的输入电压变成恒定的直流电压输出。该设计通过将转换器的输出电压与参考电压相比较,两者的差值会产生一个PWM信号控制升压器的通断时间,从而达到恒定电压输出。仿真结果显示,该实验电路能在频率为20 kHz的连续导通模式中工作,产生24 V的恒定输出电压,输出功率为100 W。  相似文献   

9.
倪云峰  夏军  周攀亮 《电子器件》2015,38(2):300-305
为了解决线性恒流源功耗大,输出电流小的缺点,提出了一种基于TL494控制的同步整流BUCK开关恒流源。该恒流源采用PWM控制原理调节主开关管和同步整流管的占空比来实现输出电流从0到20A稳定连续可调。控制器采样输出电压,当输出电压超过预定的10V电压时,主开关管关断,输出电压稳到10V,实现过压保护。另外,给出了电路原理图并进行了样机的制作与测试。测试结果表明,其恒流精度相对误差最大值为0.75%,因此该方案是可行的。  相似文献   

10.
This paper describes a new usage of the DC/DC converter developed by D.I. Sheppard and B.E. Taylor in 1983 for achieving high power factor and output regulation. This converter may be viewed as a cascade of a modified boost stage and a buck stage, with the two stages sharing the same active switch. Two possible operation regimes are described. In the first regime, the converter's input part, which is a modified boost converter, operates in discontinuous mode, and the output part, which is a buck converter, operates in continuous mode. In this regime, high power factor is naturally achieved, and the output voltage is regulated by duty-cycle modulation via a simple output feedback. In the second regime, the input part operates in continuous mode, and the output part operates in discontinuous mode, with duty-cycle modulation maintaining a high power factor and frequency modulation regulating the output. Some comparisons between the Sheppard-Taylor converter and conventional boost and buck cascade are given in the paper  相似文献   

11.
陈景忠 《半导体光电》2014,35(1):149-152
设计了一种输出功率约50W的LED恒流源驱动模块,其负载为由多只LED管(每只功率为1W)采用混联方式组成的LED阵列。通过对其电流型反激式变换及恒流控制电路的设计与试制,并在不同输入电压下,改变负载测试,可看出其电流变化规律基本相似。随着负载变小,输出电压升高,输出电流逐渐减小,输出电流稳定度达4.6%。在一定负载时,输出电压值保持在47.2V左右,电压纹波峰-峰值约为400mV。电流波动约0.05A,输出电流稳定可靠,可用于对多只串并混联的LED阵列驱动供电。  相似文献   

12.
陈景忠 《半导体光电》2013,34(1):149-152
设计了一种输出功率约50W的LED恒流源驱动模块, 其负载为由多只LED管(每只功率为1W)采用混联方式组成的LED阵列。通过对其电流型反激式变换及恒流控制电路的设计与试制, 并在不同输入电压下, 改变负载测试, 可看出其电流变化规律基本相似。随着负载变小, 输出电压升高, 输出电流逐渐减小, 输出电流稳定度达4.6%。在一定负载时, 输出电压值保持在47.2V左右, 电压纹波峰-峰值约为400mV。电流波动约0.05A, 输出电流稳定可靠, 可用于对多只串并混联的LED阵列驱动供电。  相似文献   

13.
LED可调光自动控制系统设计   总被引:2,自引:2,他引:0  
基于低功耗MSP430单片机的特点,提出一个用数字化恒流源来控制LED灯光可调的设计思路。在规定时间内,系统通过对背景光和人体红外信号检测,选择LED需求的亮度,单片机将输出电压数字写入D/A转换器,将D/A输出的电压作为恒流源的输入电压,间接地控制功率管的基极电压使功率管输出不同的电流,实现LED亮度数字可调,从而完成对LED光强度的智能控制。  相似文献   

14.
This paper proposes a novel three-phase ac-dc buck-boost converter. The proposed converter uses four active switches, which are driven by only one control signal. This converter is operated in discontinuous conduction mode (DCM) by using the pulsewidth modulation (PWM) technique, and the control scheme very easily and simply achieves purely sinusoidal input current, high power factor, low total harmonic distortion of the input current and step-up/down output voltage. Also, the proposed converter provides a constant average current to the output capacitor and load in each switching period. Thus, the ripple component of sixth times line frequency will not appear in the output voltage. Therefore, a smaller output capacitor can be used in the proposed converter. Moreover, the steady-state analysis of voltage gain and boundary operating condition are presented. Also, the selections of inductor, output capacitor and input filter are depicted. Finally, a prototype circuit with simple control logic is implemented to illustrate the theoretical analysis.  相似文献   

15.
Parallel processing inverter system   总被引:5,自引:0,他引:5  
A novel method of instantaneous voltage and power balance control of a parallel processing inverter system is proposed. It consists of a high-speed switching PWM (pulsewidth modulated) inverter with an instantaneous current minor loop controller, a voltage major loop controller, and a power balance controller. This system realizes the following functions with only one inverter: constant AC output voltage control with reactive power control, active filtering to absorb load current harmonics, DC voltage and current control as AC-to-DC converter, and uninterruptible power supply (UPS) for stand-alone operation. This system covers a wide application range, including UPS systems, new energy systems, and active filters with voltage control functions  相似文献   

16.
A new control process for single-stage three-phase buck-boost type AC-DC power converters with high power factor, sinusoidal input currents and adjustable output voltage is proposed. This converter allows variable power factor operation, but this work focus on achieving unity power factor. The proposed control method includes a fast and robust input current controller based on a vectorial sliding mode approach. The active nonlinear control strategy applied to this power converter, allows high quality input currents. Given the comparatively slow dynamics of the DC output voltage, a proportional integral (PI) controller is adopted to regulate the converter output voltage. The voltage controller modulates the amplitudes of the current references, which are sinusoidal and synchronous with the input source voltages. Experimental results from a laboratory prototype show the high power factor and the low harmonic distortion characteristics of the circuit  相似文献   

17.
A new control method of a class-E rectifier is presented, which regulates the output voltage or power with elimination of the voltage pulse of the rectifier at a constant rate. When the class-E rectifier controlled by this method is used in a class-E DC/DC power converter, both the inverter and rectifier operate under zero-voltage-switching conditions. Since the rectifier is controlled by a synchronized switch, it achieves the following advantages: (1) power efficiency for low-output voltage is improved; (2) output voltage and power are controllable at a fixed operating frequency; and (3) switching noise can be reduced. Additionally, this method is suitable for applications in which the output voltage or power are changed immediately because the output voltage and power are controlled by means of replacements of pulse patterns. The output characteristics of the rectifier are analyzed under a condition that the amplitude of the input current is constant. Experimental results show good agreement with the theoretical results  相似文献   

18.
设计一款基于ATmega16单片机的精密数控稳压电源,该单片机内置PWM方波发生器,内置10BIT高精度兰A/D转换器,采用LM317作功率调整器件,高速运放TL084作反馈控制单元,实现电压0-20V连续可调,调整精度±0.01V,最大允许电流2A,分辨率0.01A,输出纹波电压低于100mV,具有恒流输出功能.  相似文献   

19.
The three-level ZVS-PWM DC-to-DC converter   总被引:5,自引:0,他引:5  
A novel high-frequency DC-to-DC power converter for high voltage and high power is introduced which features zero voltage switching (ZVS), operation at constant frequency, regulation by pulse width modulation (PWM), and low RMS current stress upon power switches. Its greatest attribute, in comparison with the full-bridge (FB-ZVS-PWM) converter, is that the voltage across the switches is half of the input voltage, This property is achieved due to the use of a three-level leg in place of the conventional two-switch leg. Operation, analysis, design procedure and example, and simulation are presented. A prototype operating at 100 kHz, rated at 600 V input voltage, and 1.5 kW output power and 25 A output current has been fabricated and successfully tested in the laboratory. The measured efficiency at full load was 93%  相似文献   

20.
A single-stage single-switch AC–DC integrated converter is proposed in this paper, as a tight DC voltage regulator with unity input power factor for the fundamental component of the input current. Proposed converter is formed by the integration of buck-boost configuration with a buck converter operated by a single switch. The buck-boost section of the proposed configuration is operated in current discontinuous conduction mode (DCM) to get unity input power factor at the supply terminals and the buck section is operated up to boundary current conduction mode (BCM). The features acquired by the converter operating in complete discontinuous conduction mode (DCM) are unity input power factor, zero-current turn-ON for the Switch, fast and good DC output voltage regulation with extensive conversion range and low voltage stress on the switch. Additionally, the intermediate capacitor voltage stress is independent of converter load variations and so the switch also is subjected to constant peak voltage stress. A comprehensive study is carried out to obtain the necessary design equations. A design model is implemented using simulation and hardware. The results confirm the performance of the proposed configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号