首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Devices in which the transport and storage of single electrons are systematically controlled could lead to a new generation of nanoscale devices and sensors. The attractive features of these devices include operation at extremely low power, scalability to the sub-nanometre regime and extremely high charge sensitivity. However, the fabrication of single-electron devices requires nanoscale geometrical control, which has limited their fabrication to small numbers of devices at a time, significantly restricting their implementation in practical devices. Here we report the parallel fabrication of single-electron devices, which results in multiple, individually addressable, single-electron devices that operate at room temperature. This was made possible using CMOS fabrication technology and implementing self-alignment of the source and drain electrodes, which are vertically separated by thin dielectric films. We demonstrate clear Coulomb staircase/blockade and Coulomb oscillations at room temperature and also at low temperatures.  相似文献   

2.
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.  相似文献   

3.
Myoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without the heme group) was used as a reference. The results suggest single-electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors.  相似文献   

4.
We have investigated spin accumulation in Ni/Au/Ni single-electron transistors assembled by atomic force microscopy. The fabrication technique is unique in that unconventional hybrid devices can be realized with unprecedented control, including real-time tunable tunnel resistances. A grid of Au disks, 30 nm in diameter and 30 nm thick, is prepared on a SiO2 surface by conventional e-beam writing. Subsequently, 30 nm thick ferromagnetic Ni source, drain, and side-gate electrodes are formed in similar process steps. The width and length of the source and drain electrodes were different to exhibit different coercive switching fields. Tunnel barriers of NiO are realized by sequential Ar and O2 plasma treatment. By use of an atomic force microscope with specially designed software, a single nonmagnetic Au nanodisk is positioned into the 25 nm gap between the source and drain electrodes. The resistance of the device is monitored in real time while the Au disk is manipulated step-by-step with angstrom-level precision. Transport measurements in magnetic field at 1.7 K reveal no clear spin accumulation in the device, which can be attributed to fast spin relaxation in the Au disk. From numerical simulations using the rate-equation approach of orthodox Coulomb blockade theory, we can put an upper bound of a few nanoseconds on the spin-relaxation time for electrons in the Au disk. To confirm the magnetic switching characteristics and spin injection efficiency of the Ni electrodes, we fabricated a test structure consisting of a Ni/NiO/Ni magnetic tunnel junction with asymmetric dimensions of the electrodes similar to those of the single-electron transistors. Magnetoresistance measurements on the test device exhibited clear signs of magnetic reversal and a maximum tunneling magnetoresistance of 10%, from which we deduced a spin polarization of about 22% in the Ni electrodes.  相似文献   

5.
Gudiksen MS  Maher KN  Ouyang L  Park H 《Nano letters》2005,5(11):2257-2261
We report the fabrication and characterization of light-emitting transistors incorporating individual cadmium selenide (CdSe) nanocrystals. Electrical measurements conducted at low bias voltage and low temperature show clear evidence of Coulomb blockade behavior, indicating that electrons pass through the nanocrystal by single-electron tunneling. Once the bias voltage exceeds the band gap of CdSe, devices with asymmetric tunnel barriers emit linearly polarized light. Combined analyses of the electrical and optical data indicate that the tunnel couplings between the nanorod and the metallic electrodes change significantly as a function of bias voltage and light emission results from the inelastic scattering of tunneling electrons.  相似文献   

6.
The single-electron transistor is the fastest and most sensitive electrometer available today. Single-electron pumps and turnstiles are also being explored as part of the global effort to redefine the ampere in terms of the fundamental physical constants. However, the possibility of electrons tunnelling coherently through these devices, a phenomenon known as co-tunnelling, imposes a fundamental limit on device performance. It has been predicted that it should be possible to completely suppress co-tunnelling in mechanical versions of the single-electron transistor, which would allow mechanical devices to outperform conventional single-electron transistors in many applications. However, the mechanical devices developed so far are fundamentally limited by unwanted interactions with the electrical mechanisms that are used to excite the devices. Here we show that it is possible to overcome this problem by using ultrasonic waves rather than electrical currents as the excitation mechanism, which we demonstrate at low temperatures. This is a significant step towards the development of high-performance devices.  相似文献   

7.
Average position of electrons along thickness direction in a Coulomb island in an n-channel Si single-electron transistor is estimated by analyzing the back-gate voltage dependence of peak voltage (defined as the gate voltage giving a drain current peak) as a function of peak number. It is found that the accuracy of estimated average position is better than 0.5 nm and that the average position fluctuates as the peak number increases.  相似文献   

8.
9.
Spin-dependent electronic transport in a single-electron transistor with ferromagnetic external electrodes and nonmagnetic central part (island) is analyzed theoretically in the sequential tunneling and cotunneling regimes. Nonequilibrium magnetic polarization of the island due to spin accumulation (spin splitting of the chemical potential) is taken into account. The accumulation takes place when the spin relaxation time on the island is sufficiently long. The crossover from slow to fast spin relaxation limits is also analyzed. Magnetic polarization of the island and spin polarization of the flowing current are examined as a function of the gate and transport voltages.  相似文献   

10.
Luo K  Chae DH  Yao Z 《Nanotechnology》2007,18(46):465203
We have fabricated single-electron transistors by alkanedithiol molecular self-assembly. The devices consist of spontaneously formed ultrasmall Au nanoparticles linked by alkanedithiols to nanometer-spaced Au electrodes created by electromigration. The devices reproducibly exhibit addition energies of a few hundred meV, which enables the observation of single-electron tunneling at room temperature. At low temperatures, tunneling through discrete energy levels in the Au nanoparticles is observed, which is accompanied by the excitations of molecular vibrations at large bias voltage.  相似文献   

11.
We demonstrated the in situ one-step fabrication of suspended single wall carbon nanotube transistors with Fe/Al bi- layered film electrodes for practical integrated quantum phase devices. At 300 K, the devices show field effect transistor operation with an excellent subthreshold swing of S ~ 90 mV/decade for a long channel of 3 mum. In the low temperature regime, we observed four clear peaks corresponding to the four-fold degeneracy of the quantum energy levels at 3.7 K. These four clear peaks indicated that both of the contacts between the SWNT and Fe/Al are highly transparent and that a high-quality SWNT bridge is formed. The dl/dV characteristics under an applied external magnetic field indicate that the modulation of the bandgap of the nanotube with the oscillation of the conductance can be achieved by varying the magnetic field, due to the quantum interference of the electrons. In summary, the simple one-step grown SWNT junction between Fe electrodes can be utilized as a promising element for integrated quantum electronic devices.  相似文献   

12.
The recombination of electrons and holes in semiconducting polymer-fullerene blends has been identified as a main cause of energy loss in organic photovoltaic devices. Generally, an external bias voltage is required to efficiently separate the electrons and holes and thus prevent their recombination. Here we show that a large, permanent, internal electric field can be ensured by incorporating a ferroelectric polymer layer into the device, which eliminates the need for an external bias. The electric field, of the order of 50 V μm(-1), potentially induced by the ferroelectric layer is tens of times larger than that achievable by the use of electrodes with different work functions. We show that ferroelectric polymer layers enhanced the efficiency of several types of organic photovoltaic device from 1-2% without layers to 4-5% with layers. These enhanced efficiencies are 10-20% higher than those achieved by other methods, such as morphology and electrode work-function optimization. The devices show the unique characteristics of ferroelectric photovoltaic devices with switchable diode polarity and tunable efficiency.  相似文献   

13.
In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl(3) doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.  相似文献   

14.
We report detailed observations of random-telegraph charge fluctuations in a two-junction Al–AlOx–Al single-electron transistor (SET). We measured the fluctuations from 85 mK to 3 K and observed that the SET switched between two states, causing charge shifts of Qo=0.1±0.025 e on the SET's island. The transition rate out of each state was periodic in the gate voltage, varied non-monotonically with the device bias voltage, and was independent of the temperature below about 0.3 K. We discuss two effects which could contribute to the behavior of the transition rates, including heating of the defect by the island conduction electrons and inelastic scattering between the defect and electrons flowing through the SET.  相似文献   

15.
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.  相似文献   

16.
We present a new fully self-aligned single-electron memory with a single pair of nano floating gates, made of different materials (Si and Ge). The energy barrier that prevents stored charge leakage is induced not only by quantum effects but also by the conduction-band offset that arises between Ge and Si. The dimensions and position of each floating gate are well-defined and controlled. The devices exhibit a long retention time and single-electron injection at room temperature.  相似文献   

17.
Conditions for deposition of an aluminum (Al) layer on an organic light-emitting layer with an electron beam (EB) deposition system were optimized with respect to deposition rate and damage to organic layers. The damage to the organic layers was found to be mostly caused by X-rays emitted from a target bombarded with accelerated electrons. In order to decrease the X-ray intensity while maintaining a high deposition rate, we used an EB source which emits high-density EB at low acceleration voltage. In addition, we inserted a heat reflector and a sintered-carbon liner between the Al target and copper crucible to improve heat insulation. As a result, the voltage needed for the deposition of Al electrodes at a rate of about 8 nm/s was lowered from normal voltages of 2.0 kV or higher to as low as 1.5 kV. To reduce the number of electrons hitting the substrate, we set pole pieces near the target and an electron trap in the chamber. The devices on which Al electrodes were deposited with the EB system showed almost the same properties as those of devices on which the Al electrodes were deposited by a resistive-heating method.  相似文献   

18.
Electrochemistry provides a powerful sensor transduction and amplification mechanism that is highly suited for use in integrated, massively parallelized assays. Here, the cyclic voltammetric detection of flexible, linear poly(ethylene glycol) polymers is demonstrated, which have been functionalized with redox‐active ferrocene (Fc) moieties and surface‐tethered inside a nanofluidic device consisting of two microscale electrodes separated by a gap of <100 nm. Diffusion of the surface‐bound polymer chains in the aqueous electrolyte allows the redox groups to repeatedly shuttle electrons from one electrode to the other, resulting in a greatly amplified steady‐state electrical current. Variation of the polymer length provides control over the current, as the activity per Fc moiety appears to depend on the extent to which the polymer layers of the opposing electrodes can interpenetrate each other and thus exchange electrons. These results outline the design rules for sensing devices that are based on changing the polymer length, flexibility, and/or diffusivity by binding an analyte to the polymer chain. Such a nanofluidic enabled configuration provides an amplified and highly sensitive alternative to other electrochemical detection mechanisms.  相似文献   

19.
We observed a negative differential resistance (NDR) along with single-electron tunneling (SET) in the electron transport of electromigrated break junctions with metal-free tetraphenylporphyrin (H2BSTBPP) at a temperature of 11 K. The NDR strongly depended on the applied gate voltages, and appeared only in the electron tunneling region of the Coulomb diamond. We could explain the mechanism of this new type of electron transport by a model assuming a molecular Coulomb island and local density of states of the source and the drain electrodes.  相似文献   

20.
We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives noncoherent electronic transitions in the quantum dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号