首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk physical properties such as elastic moduli, thermal expansions, and moduli of rupture were measured for a series of 0.98Li2O-1.0ALO3- n SiO2 glasses and the corresponding keatite solid-solution-phase glass-ceramics. The SiO2 content ranged from n =4 to 12. The magnitude of the elastic properties of the glasses changed monotonically with increasing SiO2 content. The properties of keatite-phase glass-ceramics depended almost linearly on SiO2 content, but their behavior differed qualitatively from that of the glasses.  相似文献   

2.
Zirconia doped with 3.2–4.2 mol% (6–8 wt%) yttria (3–4YSZ) is currently the material of choice for thermal barrier coating topcoats. The present study examines the ZrO2-Y2O3-Ta2O5/Nb2O5 systems for potential alternative chemistries that would overcome the limitations of the 3–4YSZ. A rationale for choosing specific compositions based on the effect of defect chemistry on the thermal conductivity and phase stability in zirconia-based systems is presented. The results show that it is possible to produce stable (for up to 200 h at 1000°–1500°C), single (tetragonal) or dual (tetragonal + cubic) phase chemistries that have thermal conductivity that is as low (1.8–2.8W/m K) as the 3–4YSZ, a wide range of elastic moduli (150–232 GPa), and a similar mean coefficient of thermal expansion at 1000°C. The chemistries can be plasma sprayed without change in composition or deleterious effects to phase stability. Preliminary burner rig testing results on one of the compositions are also presented.  相似文献   

3.
Ultrasonic interferometry was used to measure elastic-wave velocities and moduli in six Na2O-TiO2-SiO2 glasses; three glasses contained 20 mol% TiO2 and three 25 mol% TiO2. The elastic moduli and their pressure derivatives varied systematically with the SiO2/Na2O molar ratio of the glasses. In the group of glasses which contained 20 mol% TiO2, dK/dP ( K =bulk modulus) decreased linearly from 4.85 to 2.59 as the SiO2/Na2O ratio increased; in the other group, dK/dP decreased from 4.00 to 3.05. Similarly, dμ/dP (μ=shear modulus) decreased with the SiO2/Na2O ratio, but somewhat non-linearly. The extrinsic and intrinsic contributions to the temperature dependencies of the elastic moduli are evaluated in light of the measured pressure dependencies of these moduli.  相似文献   

4.
A sonic resonance technique was used to investigate the room-temperature elastic and anelastic properties of physically mixed U0.8PU0.2O2 as a function of density, stoichiometry, and cation homogeneity. The effect of porosity on the elastic moduli was linear and is described by E =2102.7 (1–2.03 P )± 13.5 Kbars for the Young's modulus, G =823.5(1–2.05 P )± 9.1 kbars for the shear modulus, and B = 1584.8(1–1.89 P )± 59.1 kbars for the bulk modulus, where P is the volume fraction porosity. Poisson's ratio was 0.28 and was not a function of porosity. The Debye temperature of U0.8Pu0.2O2 computed from the Young's and shear moduli for theoretically dense specimens was 379°K. Variation of the O/M ratio from 1.968 to 2.006 produced no significant change in either the damping capacity or the elastic moduli of single-phase 80%UO2-20% PuO2 solid solutions. An approximate 24% decrease of the room-temperature Young's and shear moduli and an approximate increase by a factor of 14 in the internal friction were observed with gross modifications of plutonium cation homogeneity. Preliminary results suggest that internal friction measurements might be used to assay the homogeneity of UO2-PuO2 solid solutions.  相似文献   

5.
Compositions of alumina with a molybdenum dispersed phase were investigated in the 0 to 5 vol% Mo range. These compositions were also prepared with a 0.5 wt% MgO addition. All specimens were fabricated by hot-pressing, and near theoretical densities were achieved. Specimens were characterized by metallographic and X-ray diffraction analyses, and microhardness, elastic moduli, tensile strength, and fracture energy were determined. Results revealed that Mo additions did not affect grain growth; in contrast, MgO additions significantly inhibited grain growth. However, Mo additions did reduce the elastic moduli and microhardness but did not measurably affect the tensile strength. Tensile strength was dependent on grain size and fitted the G−1/3 relation. The fracture energy of Al2O3+5% Mo was 50% greater than that of Al2O3. Specimens were successfully hot-pressed with a micro-structure graded from that of Al2O3 to that of the 5% Mo composition.  相似文献   

6.
A study of the elastic moduli of Al2O3 and Si3N4 ceramics reinforced with 0 to 25 wt% SiC whiskers has been performed. The Young's moduli, shear moduli, and longitudinal modulus are compared with calculated predictions for aligned fiber composites by Hill and Hashin and Rosen, and for fibers randomly oriented in three dimensions by Christensen and Waal. The measured values are in excellent quantitative agreement with those derived for the random orientation of the SiC whiskers.  相似文献   

7.
The elastic moduli and fracture toughnesses of a series of PbO-ZnO-B2O3 glasses were measured for different PbO/ZnO ratios and for B2O3 contents from 30 to 70 mol%. Substituting ZnO for PbO increased both the elastic modulus and fracture toughness at all B2O3 levels with the fracture toughness being related to the elastic modulus. Structural effects on these properties are discussed.  相似文献   

8.
Europium sesquioxide is of interest as a control material for reactors because it has several large-cross-section isotopes which form successively on neutron capture. Pure monoclinic Eu2O3 tends to grow large grains during sintering, causing microcracks to develop and leading to anomalous mechanical properties. The effect of doping the Eu2O3 with the grain growth suppressant Ta2O3 was determined using studies of the elastic properties and internal friction by the sonic resonance technique. Compositions with <3 at.% Ta cation substitution had anomalously low room temperature elastic moduli values and showed a hysteresis on thermal cycling. These specimens also had high internal frictions. The finer-grained specimens which resulted when the dopant level exceeded 3 at.% Ta did not show these anomalous characteristics.  相似文献   

9.
The Klc values for (100), (110), and (111) single-crystal MgAl2O4 as well as those for polycrystalline MgAl2O4 with transgranular and intergranular fractures are presented and discussed on the basis of their elastic moduli. It is observed that the single-crystal toughnesses are directly related to the elastic modulus. Polycrystalline and single-crystal toughnesses are comparable; however, the intergranular fracture has the lowest toughness.  相似文献   

10.
Glasses in the system Al2O3-Y2O3-SiO2, containing TiO2 and La2O3, were investigated. Glasses of high refractive index and elastic modulus were developed. The observed Young's and shear moduli of these glasses show good agreement with theoretical values. Agreement was also found between the observed and calculated values of refractive index when the Appen's empirical coefficients were used.  相似文献   

11.
Al2O3-ZrO2 eutectics containing 0 to 12.2 mol% Y2O3 (with respect to zirconia) were produced by directional solidification using the laser floating zone (LFZ) method. Processing variables were chosen to obtain homogeneous, colony-free, interpenetrating microstructure for all of the compositional range, optimum from the viewpoint of mechanical properties. The amount of cubic, tetragonal, or monoclinic zirconia phases was determined using a combination of Raman and X-ray diffraction techniques. Monoclinic zirconia was present up to concentrations of 3 mol% Y2O3, while the amount of tetragonal zirconia gradually increased with yttria content up to 3 mol%. Cubic zirconia was the only phase detected when the yttria content reached 12 mol%. The residual stresses in alumina were measured using the shift of the ruby R lines. Compressive stresses were isotropic when measured in the samples containing tetragonal and cubic zirconia, while higher tensile, anisotropic stresses were found when monoclinic zirconia was present. They were partially relieved in the eutectic sample without yttria. These results were compared with a thermoelastic analysis based on the self-consistent model.  相似文献   

12.
Measurements of the elastic moduli for Na2O-TiO2-SiO2, glasses located in 2 adjacent primary phase fields are quantitatively represented by equations in terms of linear mole fractions. Evaluation of the data showed that these linear relations are unique for each group of glasses studied.  相似文献   

13.
The dc conductivities of ZrO2–Y2O3 ceramic alloys (in the range 3–12 mol% of Y2O3) have been obtained from ac impedance measurements at temperatures between 250° and 370°C. The Almond–West ac conductivity model has been applied to evaluate hopping rates in this system. The migration enthalpies were evaluated and shown to increase with yttria concentration, but all values determined were shown to be lower than the corresponding activation enthalpies for conductivity. The association enthalpies thus calculated were shown to be very small in 3 mol% Y2O3–ZrO3 and to increase with yttria concentration until the yttria contents were high enough to form fully stabilized cubic zirconia. For these samples the association enthalpies are about 0.19 eV, and no longer sensitive to yttria content. The low hopping rate at high yttria concentration might be attributed to low entropy in the system, which might be attributed to the formation of vacancy clusters and/or an ordering of the structure.  相似文献   

14.
The elastic moduli of yttria (Y2O3) samples that were made from powders with various particle morphologies were studied by means of ultrasonic measurements. The soundwave velocities in the longitudinal and transverse modes were measured. The elastic moduli were calculated from the sound velocities and density. For the high-purity, high-density (>5000 kg/m3) Y2O3 that was prepared in the present study, the average density and elastic moduli (and their standard deviations) were as follows: density (ρ) of 5020 ± 18 kg/m3, Young's modulus ( E ) of 179.8 ± 4.8 GPa, shear modulus ( G ) of 69.2 ± 2.0 GPa, bulk modulus ( B ) of 148.9 ± 3.0 GPa, and Poisson's ratio (ν) of 0.299 ± 0.004. The average longitudinal and transverse soundwave velocities ( V l and V t, respectively) were 6931 ± 65 and 3712 ± 49 m/s, respectively. The elastic moduli of lanthana-strengthened yttria (LSY) were ∼6% lower than those of high-purity Y2O3, and the nu value for LSY was ∼0.304. It has been argued that soundwave velocity is better than density, in regard to predicting the elastic moduli of fully dense and slightly porous materials. A linear equation that describes the change of the elastic moduli with soundwave velocity alone has been suggested. This equation was applicable to a relative elastic moduli range of 0.75–1.02.  相似文献   

15.
The elastic properties of polycrystalline monoclinic Gd2O3 were determined by the sonic-resonance method. Volume-fraction porosity varied from 0.025 to 0.367 and temperature from room temperature to 1400°C. The Young's and shear moduli are linear functions of volume-fraction porosity, but the rate of their decrease with increasing porosity is less than that expected. The moduli decreased more rapidly than expected with increasing temperature. The Debye temperature is 362°K. With increasing temperature, the first Grueneisen constant, γ, decreases, whereas the second Grueneisen constant, δ, increases.  相似文献   

16.
LaPO4/Al2O3 composites were fabricated by spark plasma sintering. The effects of LaPO4 contents on the mechanical properties of the composites were investigated. The bending strength and fracture toughness can reach the maximum value of 568.2±30 MPa and 4.8±0.5 MPa·m1/2 for the composite with 16.4 vol% LaPO4 addition, respectively. The elastic moduli and hardness of the composites decreased with increasing LaPO4 content. Furthermore, the experimental results show that the composites can be machined by a tungsten carbide drill as the LaPO4 volume fraction is higher than 34.4 vol%.  相似文献   

17.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

18.
The seven elastic compliances and seven elastic constants of single crystal calcium molybdate were determined by a resonance method. The compliance s16, which is zero for higher symmetry tetragonal crystals, need not be zero for crystals of lower tetragonal symmetry and contributes significantly to the orientation dependence of the elastic moduli of calcium molybdate. The values of the compliances and their standard errors (based on 41 measurements) in units of 10−11m2/N are s11= 0.974 + 0.005, s33= 0.958 ± 0.004, s44= 2.720 ± 0.009, s66= 2.471 ± 0.022, s12=−0.380 ± 0.010, s13=−0.230 ± 0.009, and s16= 0.433 ± 0.010.  相似文献   

19.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

20.
Clear glasses which included droplet-like microphases were produced when SiO2 in sodium borosilicate glasses was replaced by Sc2O3. Phase separation and/or crystallization occurred after heat treatment. The porous skeleton of leached glasses consisted of hexagonal ScBO3. The specific surface areas and pore radii are comparable to those of porous SiO2 glass. The sintering temperature of porous Sc-based material is higher than that of porous SiO2. Alumina contamination influenced the structure of the porous material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号