首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and facile method is described to identify the glycosylation sites and site-specific heterogeneity in the carbohydrate attached to glycoproteins. In this procedure, the peptide backbone of the glycoprotein is cleaved enzymatically. The resulting peptide/glycopeptide mixture is divided into three fractions. The first is analyzed directly by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), while the other two aliquots are analyzed by MALDI-MS after enzymatic release of the N-linked chains and the N- and O-linked chains. Comparison of these MALDI mass spectra provides the molecular weight of each carbohydrate side chain and of the peptide to which it was attached. This information combined with the amino acid sequence of the protein identifies the glycosylation sites, and provides information concerning site-specific oligosaccharide heterogeneity. This approach does not require time-consuming liquid chromatographic separations and can be performed on as little as 10 pmol of glycoprotein. Thus, our approach is faster and simpler than procedures currently used for glycosylation site mapping, and may offer a slight sensitivity advantage.  相似文献   

2.
We have investigated the potential of structural elucidation of O-linked glycopeptides by post-source decay matrix-assisted laser desorption ionization mass spectrometry (PSD-MALDI-MS). In order to establish detailed fragmentation patterns and to dissect fragment ions with and without carbohydrate content, the same O-linked MUC1-derived glycopeptides with acetylated and non-acetylated sugars were analysed and compared. Furthermore, we were interested to examine possible differences in the fragmentation between glycopeptides with acetylated and non-acetylated sugars. The obtained PSD-MALDI-MS spectra showed a rather complete set of fragmentation data which allows to localize the glycan on the peptide, in parallel with sequencing a short glycan and the backbone peptide. Fragmentations of the sugars were dominated by inter-ring cleavages at the glycosidic bond. Intra-ring cleavage did also occur from the non-reducing end, but to a much lower extent. The fragmentation of the peptide backbone was not changed either by acetylated or non-acetylated sugars. Glycosylated peptide fragments occurred as fully glycosylated fragment ions, partially deglycosylated ions and completely deglycosylated ions, and was not influenced by the acetylation of sugars. However, differences occurred in the quality and quantity of fragment ions from the non-reducing end of the glycan part when comparing acetylated with non-acetylated glycopeptides.  相似文献   

3.
High performance capillary electrophoresis (HPCE), high performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS), on-line CE-electrospray ionization-mass spectrometry (CE-ESI-MS) and on-line LC-ESI-MS have been employed to characterize a heterogeneous glycoprotein, recombinant human erythropoietin (rHuEPO) expressed from Chinese hamster ovary (CHO) cells. The analysis was demonstrated through two specific levels of detail: the intact protein and tryptic digests of the protein. Six glycoforms of rHuEPO were separated by HPCE; seventeen tryptic fragments in a total of 21 nonglycosylated and glycosylated peptides were characterized; the O-linked glycopeptides were analyzed directly by CE-ESI-MS and LC-ESI-MS. In particular, four glycans of O-acetylation of sialic acid were identified in the O-linked glycosylated fragments. The molecular weight of rHuEPO was accurately determined by MALDI-TOF-MS.  相似文献   

4.
The present study addresses the site occupancy and the site-specific carbohydrate microheterogeneity of N-linked oligosaccharides in recombinant human factor VIII, expressed in Chinese hamster ovary cells. The four factor VIIIa polypeptides, formed upon incubation with human thrombin, were isolated and separately subjected to proteolysis with trypsin. These tryptic digests were analyzed by reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry. Selected ion monitoring of diagnostic carbohydrate ions was utilized to identify glycopeptide-containing chromatographic peaks. Oligomannose and complex carbohydrates were detected at the glycosylation sites of the 50 and the 73 kDa polypeptides, while all the oligosaccharides identified on the B-domain were complex-type structures. Only the 43 kDa polypeptide was found nonglycosylated. These studies established a biantennary core-fucosylated carbohydrate as the major substituent, consistent with the conclusions of the analyses on the entire N-linked carbohydrate pool (Kumar, H. P. M.; Hague, C.; Haley, T.; Starr, C. M.; Besman, M. J.; Lundblad, R.; Baker, D. Biotechnol. Appl. Biochem. 1996, 24, 207-216.). In addition, this mass spectrometric investigation revealed the presence of a complex nonfucosylated oligosaccharide not reported previously for this glycoprotein.  相似文献   

5.
Clusterin is a ubiquitous, heterodimeric glycoprotein with multiple possible functions that are likely influenced by glycosylation. Identification of oligosaccharide attachment sites and structural characterization of oligosaccharides in human serum clusterin has been performed by mass spectrometry and Edman degradation. Matrix-assisted laser desorption ionization mass spectrometry revealed two molecular weight species of holoclusterin (58,505 +/- 250 and 63,507 +/- 200). Mass spectrometry also revealed molecular heterogeneity associated with both the alpha and beta subunits of clusterin, consistent with the presence of multiple glycoforms. The data indicate that clusterin contains 17-27% carbohydrate by weight, the alpha subunit contains 0-30% carbohydrate and the beta subunit contains 27-30% carbohydrate. Liquid chromatography electrospray mass spectrometry with stepped collision energy scanning was used to selectively identify and preparatively fractionate tryptic glycopeptides. Edman sequence analysis was then used to confirm the identities of the glycopeptides and to define the attachment sites within each peptide. A total of six N-linked glycosylation sites were identified, three in the alpha subunit (alpha 64N, alpha 81N, alpha 123N) and three in the beta subunit (beta 64N, beta 127N, and beta 147N). Seven different possible types of oligosaccharide structures were identified by mass including: a monosialobiantennary structure, bisialobiantennary structures without or with one fucose, trisialotriantennary structures without or with one fucose, and possibly a trisialotriantennary structure with two fucose and/or a tetrasialotriantennary structure. Site beta 64N exhibited the least glycosylation diversity, with two detected types of oligosaccharides, and site beta 147N exhibited the greatest diversity, with five or six detected types of oligosaccharides. Overall, the most abundant glycoforms detected were bisialobiantennary without fucose and the least abundant were monosialobiantennary, trisialotriantennary with two fucose and/or tetrasialotriantennary. Clusterin peptides accounting for 99% of the primary structure were identified from analysis of the isolated alpha and beta subunits, including all Ser- and Thr-containing peptides. No evidence was found for the presence of O-linked or sulfated oligosaccharides. The results provide a molecular basis for developing a better understanding of clusterin structure-function relationships and the role clusterin glycosylation plays in physiological function.  相似文献   

6.
In a previous study, electrospray ionization mass spectrometry was used to analyze the structure of the O-glycopeptide diptericin, an antibacterial peptide from the fleshfly Phormia terranovae. Several glycoforms of diptericin differing in the length of their oligosaccharide chains were present at the final stage of purification. In order to determine the origin of this glycan heterogeneity, we analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) the relative abundance of the different diptericin glycoforms in fractions obtained after each purification step, and directly in the hemolymph and in the fat body which produces diptericin. MALDI-MS clearly shows that the purification procedure had no effect on the O-linked oligosaccharide chains of diptericin, suggesting that diptericin is synthesized as a family of heterogeneous glycopeptides. In addition, in these experiments, differential mapping by MALDI-MS of the hemolymph and fat body tissue from bacteria-challenged and naive larvae allowed us to detect induced or repressed molecules which may be involved in the immune response of P. terranovae.  相似文献   

7.
The dominant Chinese hamster ovary cell glycosylation mutant, LEC18, was selected for resistance to pea lectin (Pisum sativum agglutinin (PSA)). Lectin binding studies show that LEC18 cells express altered cell surface carbohydrates with markedly reduced binding to 125I-PSA and increased binding to 125I-labeled Datura stramonium agglutinin (DSA) compared with parental cells. Desialylated [3H]Glc-labeled LEC18 cellular glycopeptides that did not bind to concanavalin A-Sepharose exhibited an increased proportion of species that were bound to DSA-agarose. Most of these glycopeptides bound to ricin-agarose and were unique to LEC18 cells. This fraction was purified from approximately 10(10) cells and shown by 1H NMR spectroscopy and methylation linkage analysis to contain novel N-linked structures. Digestion of these glycopeptides with mixtures of beta-D-galactosidases and N-acetyl-beta-D-glucosaminidases gave core glycopeptides that, in contrast to cores from parental cells, were mainly not bound to concanavalin A-Sepharose or to PSA-agarose. 1H NMR spectroscopy, matrix-assisted laser desorption ionization/time of flight mass spectrometry, electrospray mass spectrometry, and collision-activated dissociation mass spectrometry showed that the LEC18 core glycopeptides contained a new GlcNAc residue that substitutes the core GlcNAc residues. Methylation linkage analysis of the parent compound provided evidence that the GlcNAc is linked at O-6 to give the following novel, N-linked core structure. [formula: see text]  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been shown to be extensively modified by N-linked glycosylation; however, the presence of O-linked carbohydrates on the glycoprotein has not been firmly established. We have found that enzymatic deglycosylation of the HIV-1 envelope glycoprotein with neuraminidase and O-glycosidase results in a decrease in the apparent molecular weight of the envelope glycoprotein. This result was observed in both vaccinia virus recombinant-derived envelope glycoproteins and glycoproteins derived from the IIIB, SG3, and HXB2, strains of HIV-1. The decrease in molecular weight was also observed when the envelope glycoprotein had been deglycosylated with N-glycanase F after treatment with neuraminidase and O-glycosidase, indicating that the decrease in apparent molecular weight was not attributable to the removal of N-linked carbohydrate. Treatment with neuraminidase, O-glycosidase, and N-glycanase F was found to be necessary to remove all radiolabel from [3H]glucosamine-labelled envelope glycoprotein, a result seen for both recombinant and HIV-1-derived envelope glycoprotein. [3H]glucosamine-labelled carbohydrates liberated by O-glycosidase treatment were separated by paper chromatography and were found to be of a size consistent with O-linked oligosaccharides. We, therefore, conclude that the HIV-1 envelope glycoprotein is modified by the addition of O-linked carbohydrates.  相似文献   

9.
It is demonstrated with glycopeptides of the polymorphic epithelial mucin (MUC1) that post-source decay matrix-assisted laser desorption ionization (PSD-MALDI) is a fast, highly sensitive, and reproducible method for the localization of O-glycosylation sites by reflectron time-of-flight (TOF) mass spectrometry. We have analyzed GalNAc-carrying peptides of up to 25 amino acids, and could distinguish even neighboring glycosylation sites. This method was also able to localize and characterize disaccharides (e.g., the Thomsen-Friedenreich disaccharide) on MUC1 derived peptides. PSD-MALDI-MS fragment ion patterns were recorded in the positive ion mode from the synthetic peptide TAP25 [(T1aAPPAHGVT9S10APDT14RPAPGS20) T1bAPPA], an overlapping sequence of MUC1 tandem repeats, which was glycosylated with GaINAc in vitro. The glycosylation sites found were either Thr9 or Thr1b in the monoglycosylated, Thr9 and Thr1b in the diglycosylated, and Thr9, Thr1b, and Ser20 in the triglycosylated peptide. A single PSD-MALDI-MS spectrum of the underivatized and uncleaved di- or triglycosylated TAP25 peptide was sufficient to identify the glycosylation sites, thereby distinguishing six potential, partly adjacent, glycosylation sites. The monoglycosylated fraction was found to consist of a mixture of two glycosylated species with the same molecular weight. This was shown by the analysis of proteolytic digests. PSD-MALDI-MS of the resulting peptides right out of the digestion probe was sufficient to identify the Gal-NAc-glycosylation sites as either Thr9 or Thr1b, respectively. Beyond the methodical aspects the results revealed that in vitro glycosylation of the TAP25 peptide with a transferase system from human milk differs from that obtained with a breast cancer cell transferase system.  相似文献   

10.
Complete and rapid peptide and glycopeptide mapping of a mouse monoclonal immunoglobulin (IgG2b) were carried out by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry (LC/ ESI IT-MS/MS). It was possible to obtain spectra of a minor glycopeptide at a quantity as low as 1.8 pmol. Reduced and carboxymethylated mouse antidansyl monoclonal IgG2b (RCM-IgG2b) was digested with lysyl-endopeptidase. Proteolytic peptides were subjected to capillary HPLC separation followed by analysis with an ion trap mass spectrometer. The complete amino acid sequence of the IgG2b was characterized by using LC/ ESI IT-MS/MS. The structures of 12 different types of O-linked oligosaccharides attached to Thr-221AH in the hinge region and those of three major types of N-linked oligosaccharides attached to Asn-297H have been characterized.  相似文献   

11.
During the analysis of an Asp-N digest of a recombinant hematopoietic growth factor by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we observed pseudomolecular ions corresponding to reduced forms of peptides known to be present only in single disulfide linkages. Chromatographic fractionation of the peptide digest, followed by MALDI-MS and electrospray ionization (ESI) MS, confirmed that the reduced peptides were not present in the map. Fragmentation of the disulfide-linked peptides into their reduced forms occurred upon ionization from different matrices (alpha-cyano-4-hydroxycinnamic acid,2,5-dihydroxybenzoic acid, and in some instances sinapinic acid) but only after increasing the laser fluence to above threshold. Analysis of the disulfide-linked peptide fractions by ESI-MS, before and after mixing and drying with matrix, indicated that the matrix did not cause reduction. In a low-energy tandem mass spectrometric experiment with one of the cystinyl peptides, fragmentation did not occur preferentially at the disulfide bond. The pseudomolecular ions exhibited the same m/z values by MALDI-MS as their chemically reduced counterparts, indicating that they arose due to prompt fragmentation or "in-source decay" rather than "post-source decay". This finding is important for MALDI-MS analysis of peptide maps of proteins and peptide fractions with intact disulfides.  相似文献   

12.
Alpha-galactosidase from Trichoderma reesei is a glycoprotein that contains O- and N-linked carbohydrate chains. There are 6 O-linked glycans per protein molecule that are linked to serine and threonine and can be released by beta-elimination. Among these are monomers: D-glucose, D-mannose, and D-galactose; dimers: alpha1-6 D-mannopyranosyl-alpha-D-glycopyranoside and alpha1-6 D-glucopyranosyl-alpha-D-galactopyranoside and one trimer: alpha-D-glucopyranosyl-alpha1-2 D-mannopyranosyl-alpha1-6 D-galactopyranoside. N-linked glycans are of the mannose-rich type and may be released by treating the protein with Endo-beta-N-acetyl glycosaminidase F or by hydrozinolysis. The enzyme was deglycosylated with Endo-beta-N-acetyl glycosaminidase F as well as with a number of exoglycosidases that partially remove the terminal residues of O-linked glycans. The effect of enzymatic deglycosylation on the properties of alpha-galactosidase has been considered. The effects of tunicamycin and 2-deoxyglucose on the secretion and glycosylation of the enzyme during culture growth have been analysed. The presence of two glycoforms of alpha-galactosidase differing in the number of N-linked carbohydrate chains and the microheterogeneity of the carbohydrate moiety of the enzyme are described.  相似文献   

13.
A mass spectrometry approach for the detection and identification of variants of the plasma protein transthyretin (TTR) is presented. The single amino acid substitutions found in TTR are closely associated with familial transthyretin amyloidosis (ATTR), a hereditary degenerative disease. A definitive diagnosis of ATTR relies on the detection and identification of TTR variants. The approach presented here is based on isolation of serum TTR using immunoprecipitation. The detection of the variant is achieved by mass measurement of the intact protein with electrospray ionization mass spectrometry (ESIMS). The liquid chromatography/ESIMS analysis of the tryptic digest of the protein followed by subsequent matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry and MALDI postsource decay of the relevant recovered chromatographic fraction containing the variant peptide allows the identification of unknown variants. The method was successfully tested using serum from ATTR patients with known variants (Val30-->Met and Val122-->Ile). A new TTR variant, Ser23-->Asn, was detected and identified using the above method where isoelectric focusing and restriction enzyme analysis failed to identify the nature of the variant.  相似文献   

14.
A secretion leader derived from a domain of the extracellular Barrier protease of the yeast Saccharomyces cerevisiae has been expressed in wild-type and in mnn1, mnn9, and mnn1 mnn9 glycosylation mutant strains of S. cerevisiae. Structural comparison of the extracellular leader by mass spectrometry, peptide mapping, and elementary analysis proved that all strains produced a heterogeneous, heavily glycosylated polypeptide of 161 amino acids with both N- and O-glycosylation and phosphorylation. All three potential Asn N-linked sites were glycosylated to some extent with the expected structures. Neither the different growth media used nor the glycosylation mutations had significant effect on O-glycosylation with respect to both site selectivity and size of the carbohydrate structures. All 33 Ser and 21 Thr residues in the polypeptide were glycosylated at least partially, with an average of more than 2 mannoses/site. Although the mnn1 mutation blocks addition of alpha 1,3-linked mannose, the bar secretion domain expressed in the mnn1 and mnn1 mnn9 transformants unexpectedly contained some O-linked structures with at least 4 mannoses/chain. These O-linked structures were as large as when the leader was expressed in the mnn9 and wild-type strains. The bar secretion domain also had a previously undocumented phosphorylated O-linked structure.  相似文献   

15.
A method for the analysis of O-glycosylation of peptides has been developed, combining capillary electrophoretic (CE) separation and electrospray ionization mass spectrometry. Synthetic peptides with apomucin 'tandem repeat' sequences which present potential O-glycosylation sites on threonine and serine residues were used as model system. In vitro O-glycosylated peptide samples were obtained by incubation of the peptides with human gastric microsomal homogenates containing N-acetylgalactosamine transferase activity in the presence of uridyl diphosphate N-acetylgalactosamine (UDP-GalNAc). CE was carried out in the presence of the linear polymer poly(vinyl alcohol) in the electrophoresis solvent, resulting in a greatly improved separation of the up to five different glycoforms of peptides with lengths of 8, 16 or 23 amino acids, and the unglycosylated peptides. After separation and peak collection, the number of modifications with N-acetyl galactosamine (GalNAc) could be determined by electrospray ionization mass spectrometry. The glycosylation pattern was shown to depend on the amino acid sequence of the peptides.  相似文献   

16.
Capillary electrophoresis/electrospray ionization (CE/ESI) high mass accuracy time-of-flight mass spectrometry was used for the first time to characterize small proteins using peptide mapping. To identify small proteins, the intact proteins were first analyzed to obtain their average molecular weights with errors less than 1 Da. On-line capillary electrophoresis mass spectrometry of the tryptic digests of these small proteins was then performed to obtain the accurate molecular weights of the peptides with accuracies of approximately 10 ppm. Next, this information was used for the identification of the proteins using a protein database. It was found that high mass accuracy is an effective tool in reducing the list of most-likely proteins generated by the database. In addition, on-line collision-induced dissociation of the completely or partially resolved capillary electrophoresis peaks of the protein digests was used to unambiguously identify the sequences of these peptides. Each CE/ESI-MS analysis used only 5 nL of sample containing approximately 120 fmol of each peptide in protein digests. The results indicate that the combination of capillary electrophoresis and high resolution, high mass accuracy time-of-flight mass spectrometry is a viable option for the identification of small proteins using peptide mapping.  相似文献   

17.
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was applied for the study of noncovalent chaperone SecB-ligand complexes produced in solution and examined in the gas phase with the aid of electrospray ionization (ESI). Since chaperone proteins are believed to recognize and bind only with ligands with nonnative tertiary structure, this work required careful unfolding of the ligand and subsequent reaction with the intact chaperone (the noncovalent tetrameric protein, SecB). A high denaturant concentration was employed to produce nonnative structures of the OppA, and microdialysis of the resulting solutions containing the chaperone-ligand complexes was carried out to rapidly remove the denaturant prior to analysis. Multistage mass spectrometry was essential to the successful study of these complexes since the initial mass spectra indicated extensive adduction that precluded mass measurements, even after microdialysis. However, low energy collisional activation of the ions in the FTICR trap proved useful for adduct removal, and careful control of excitation level preserved the intact complexes of interest, revealing a 1:1 SecB:OppA stoichiometry. To our knowledge, these results present the first direct observation of chaperone-ligand noncovalent complexes and the highest molecular weight heterogeneous noncovalent complex observed to date by mass spectrometry. Furthermore, these results highlight the capabilities of FTICR for the study of such complex systems, and the development of a greater understanding of chaperone interactions in protein export.  相似文献   

18.
beta(1-39) amyloid peptide is one of the components of the cerebral amyloid deposits that are characteristic of Alzheimer's disease. Solid-phase synthesis of this peptide resulted in a fairly complex crude product containing both the target peptide and a number of side products. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry allowed rapid and reliable identification of both the desired peptide and most of the side products which were found to have relative molecular masses above and below that of the target peptide.  相似文献   

19.
Electrospray ionization mass spectrometry was used to study conformation and aggregation of the synthetic beta-amyloid peptide, residues 1-40 (betaA4), as a function of concentration and sample aging. All mass spectra showed a major envelope of peaks corresponding to charge states of 7-3 of the monomeric form of betaA4. In addition, weaker envelopes of peaks corresponding to charge states of dimeric, trimeric, and tetrameric betaA4 species were seen under gentle ionization conditions. The average charge state of the envelope associated with the monomeric form decreased by ca. 0.5 z as samples were aged, indicating that the relatively open form (likely random coil) of the peptide was modified into the more compact form (likely beta-sheet) as a function of sample aging. The aggregate forms became weaker and ultimately were absent both in the more dilute solutions and in aged aliquots of the concentrated sample. These aggregates were interpreted as assemblies of the random coil form. We interpret our inability to see an ion envelope that can be associated with aggregates of the beta-sheet form to be a consequence of the presumed very compact nature of this form. A model for the formation of betaA4 fibrils is proposed and discussed.  相似文献   

20.
Positive and negative ion mass spectra of arsenic trioxide (As2O3) and arsenic pentaoxide (As2O5) have been obtained by single-step laser desorption/ionization time-of-flight mass spectrometry. Pulsed UV radiation at 266 nm was used for the simultaneous desorption and ionization of the solid sample. High-mass cluster ions that are unique to the oxidation state of each oxide sample appear in the negative ion mass spectra. The As2O3 produces As3O5-, while the As2O5 yields As3O8-. The formation of unique negative cluster ions presents the capability for arsenic oxidation state speciation by laser desorption/ionization mass spectrometry. The ability of time-of-flight mass spectrometry to examine the relative amounts of each arsenic oxide present in a series of mixtures is discussed. Application of our speciation technique to a model incinerator sample is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号